In multiscale materials modeling, it is desirable that different levels of details can be specified in different regions of interest without the separation of scales so that the geometric and physical properties of materials can be designed and characterized. Existing materials modeling approaches focus more on the representation of the distributions of material compositions captured from images. In this paper, a multiscale materials modeling method is proposed to support interactive specification and visualization of material microstructures at multiple levels of details, where designer's intent at multiple scales is captured. This method provides a feature-based modeling approach based on a recently developed surfacelet basis. It has the capability to support seamless zoom-in and zoom-out. The modeling, operation, and elucidation of materials are realized in both the surfacelet space and the image space.

References

1.
Shan
,
Z.
, and
Gokhale
,
A. M.
,
2004
, “
Digital Image Analysis and Microstructure Modeling Tools for Microstructure Sensitive Design of Materials
,”
Int. J. Plast.
,
20
(
7
), pp.
1347
1370
.
2.
Lewis
,
A. C.
, and
Geltmacher
,
A. B.
,
2006
, “
Image-Based Modeling of the Response of Experimental 3D Microstructures to Mechanical Loading
,”
Scr. Mater.
,
55
(
1
), pp.
81
85
.
3.
Qian
,
L.
,
Toda
,
H.
,
Uesugi
,
K.
,
Kobayashi
,
M.
, and
Kobayashi
,
T.
,
2008
, “
Direct Observation and Image-Based Simulation of Three-Dimensional Tortuous Crack Evolution Inside Opaque Materials
,”
Phys. Rev. Lett.
,
100
(
11
), p.
115505
.
4.
Corson
,
P. B.
,
1974
, “
Correlation Functions for Predicting Properties of Heterogeneous Materials. I. Experimental Measurement of Spatial Correlation Functions in Multiphase Solids
,”
J. Appl. Phys.
,
45
(
7
), pp.
3159
3164
.
5.
Adams
,
B. L.
,
Morris
,
P. R.
,
Wang
,
T. T.
,
Willden
,
K. S.
, and
Wright
,
S. I.
,
1987
, “
Description of Orientation Coherence in Polycrystalline Materials
,”
Acta Metall.
,
35
(
12
), pp.
2935
2946
.
6.
Wang
,
Y.
, and
Rosen
,
D. W.
,
2010
, “
Multiscale Heterogeneous Modeling With Surfacelets
,”
Comput.-Aided Des. Appl.
,
7
(5), pp.
759
776
.
7.
Huang
,
W.
,
Wang
,
Y.
, and
Rosen
,
D. W.
,
2014
, “
Inverse Surfacelet Transform for Image Reconstruction With Constrained Conjugate Gradient Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
2
), p.
021005
.
8.
Yang
,
N.
,
Boselli
,
J.
, and
Sinclair
,
I.
,
2001
, “
Simulation and Quantitative Assessment of Homogeneous and Inhomogeneous Particle Distributions in Particulate Metal Matrix Composites
,”
J. Microsc.
,
201
(
2
), pp.
189
200
.
9.
Ayyar
,
A.
, and
Chawla
,
N.
,
2006
, “
Microstructure-Based Modeling of Crack Growth in Particle Reinforced Composites
,”
Compos. Sci. Technol.
,
66
(
13
), pp.
1980
1994
.
10.
Valiveti
,
D. M.
, and
Ghosh
,
S.
,
2007
, “
Morphology Based Domain Partitioning of Multi-Phase Materials: A Preprocessor for Multi-Scale Modelling
,”
Int. J. Numer. Methods Eng.
,
69
(
8
), pp.
1717
1754
.
11.
Schröder-Turk
,
G. E.
,
Mickel
,
W.
,
Kapfer
,
S. C.
,
Klatt
,
M. A.
,
Schaller
,
F. M.
,
Hoffmann
,
M. J. F.
,
Kleppmann
,
N.
,
Armstrong
,
P.
,
Inayat
,
A.
,
Hug
,
D.
,
Reichelsdorfer
,
M.
,
Peukert
,
W.
,
Schwieger
,
W.
, and
Mecke
,
K.
,
2011
, “
Minkowski Tensor Shape Analysis of Cellular, Granular and Porous Structures
,”
Adv. Mater.
,
23
(
22–23
), pp.
2535
2553
.
12.
Adams
,
B. L.
,
Henrie
,
A.
,
Henrie
,
B.
,
Lyon
,
M.
,
Kalidindi
,
S. R.
, and
Garmestani
,
H.
,
2001
, “
Microstructure-Sensitive Design of a Compliant Beam
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1639
1663
.
13.
Saheli
,
G.
,
Garmestani
,
H.
, and
Adams
,
B. L.
,
2004
, “
Microstructure Design of a Two Phase Composite Using Two-Point Correlation Functions
,”
J. Comput.-Aided Mater. Des.
,
11
(
2–3
), pp.
103
115
.
14.
Adams
,
B. L.
,
Xiang
,
G.
, and
Kalidindi
,
S. R.
,
2005
, “
Finite Approximations to the Second-Order Properties Closure in Single Phase Polycrystals
,”
Acta Mater.
,
53
(
13
), pp.
3563
3577
.
15.
Torquato
,
S.
,
Beasley
,
J. D.
, and
Chiew
,
Y. C.
,
1988
, “
Two-Point Cluster Function for Continuum Percolation
,”
J. Chem. Phys.
,
88
(
10
), pp.
6540
6547
.
16.
Manwart
,
C.
,
Torquato
,
S.
, and
Hilfer
,
R.
,
2000
, “
Stochastic Reconstruction of Sandstones
,”
Phys. Rev. E
,
62
(
1
), pp.
893
899
.
17.
Tewari
,
A.
,
Gokhale
,
A. M.
,
Spowart
,
J. E.
, and
Miracle
,
D. B.
,
2004
, “
Quantitative Characterization of Spatial Clustering in Three-Dimensional Microstructures Using Two-Point Correlation Functions
,”
Acta Mater.
,
52
(
2
), pp.
307
319
.
18.
Baniassadi
,
M.
,
Garmestani
,
H.
,
Li
,
D. S.
,
Ahzi
,
S.
,
Khaleel
,
M.
, and
Sun
,
X.
,
2011
, “
Three-Phase Solid Oxide Fuel Cell Anode Microstructure Realization Using Two-Point Correlation Functions
,”
Acta Mater.
,
59
(
1
), pp.
30
43
.
19.
Fullwood
,
D. T.
,
Niezgoda
,
S. R.
,
Adams
,
B. L.
, and
Kalidindi
,
S. R.
,
2010
, “
Microstructure Sensitive Design for Performance Optimization
,”
Prog. Mater. Sci.
,
55
(
6
), pp.
477
562
.
20.
Baniassadi
,
M.
,
Ahzi
,
S.
,
Garmestani
,
H.
,
Ruch
,
D.
, and
Remond
,
Y.
,
2012
, “
New Approximate Solution for N-Point Correlation Functions for Heterogeneous Materials
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
104
119
.
21.
Fast
,
T.
, and
Kalidindi
,
S. R.
,
2011
, “
Formulation and Calibration of Higher-Order Elastic Localization Relationships Using the MKS Approach
,”
Acta Mater.
,
59
(
11
), pp.
4595
4605
.
22.
Xu
,
H.
,
Dikin
,
D. A.
,
Burkhart
,
C.
, and
Chen
,
W.
,
2014
, “
Descriptor-Based Methodology for Statistical Characterization and 3D Reconstruction of Microstructural Materials
,”
Comput. Mater. Sci.
,
85
, pp.
206
216
.
23.
Gupta
,
A.
,
Cecen
,
A.
,
Goyal
,
S.
,
Singh
,
A. K.
, and
Kalidindi
,
S. R.
,
2015
, “
Structure–Property Linkages Using a Data Science Approach: Application to a Non-Metallic Inclusion/Steel Composite System
,”
Acta Mater.
,
91
, pp.
239
254
.
24.
Wu
,
K.
,
Dijke
,
M. J.
,
Couples
,
G. D.
,
Jiang
,
Z.
,
Ma
,
J.
,
Sorbie
,
K. S.
,
Crawford
,
J.
,
Young
,
I.
, and
Zhang
,
X.
,
2006
, “
3D Stochastic Modelling of Heterogeneous Porous Media—Applications to Reservoir Rocks
,”
Transp. Porous Media
,
65
(
3
), pp.
443
467
.
25.
Wang
,
Y.
,
2007
, “
Periodic Surface Modeling for Computer Aided Nano Design
,”
Comput.-Aided Des.
,
39
(
3
), pp.
179
189
.
26.
Wang
,
Y.
,
2008
, “
Degree Elevation and Reduction of Periodic Surfaces
,”
Comput.-Aided Des. Appl.
,
5
(
6
), pp.
841
854
.
27.
Wang
,
Y.
,
2009
, “
Computing Minkowski Sum of Periodic Surface Models
,”
Comput.-Aided Des. Appl.
,
6
(
6
), pp.
825
837
.
28.
Qi
,
C.
, and
Wang
,
Y.
,
2009
, “
Feature-Based Crystal Construction in Computer-Aided Nano-Design
,”
Comput.-Aided Des.
,
41
(
11
), pp.
792
800
.
29.
Huang
,
W.
,
Didari
,
S.
,
Wang
,
Y.
, and
Harris
,
T. A.
,
2015
, “
Generalized Periodic Surface Model and Its Application in Designing Fibrous Porous Media
,”
Eng. Comput.
,
32
(
1
), pp.
7
36
.
30.
Jung
,
Y.
,
Chu
,
K. T.
, and
Torquato
,
S.
,
2007
, “
A Variational Level Set Approach for Surface Area Minimization of Triply-Periodic Surfaces
,”
J. Comput. Phys.
,
223
(
2
), pp.
711
730
.
31.
Yoo
,
D. J.
,
2011
, “
Porous Scaffold Design Using the Distance Field and Triply Periodic Minimal Surface Models
,”
Biomaterials
,
32
(
31
), pp.
7741
7754
.
32.
Yoo
,
D.
,
2013
, “
New Paradigms in Hierarchical Porous Scaffold Design for Tissue Engineering
,”
Mater. Sci. Eng.: C
,
33
(
3
), pp.
1759
1772
.
33.
Afshar
,
M.
,
Anaraki
,
A. P.
,
Montazerian
,
H.
, and
Kadkhodapour
,
J.
,
2016
, “
Additive Manufacturing and Mechanical Characterization of Graded Porosity Scaffolds Designed Based on Triply Periodic Minimal Surface Architectures
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
481
494
.
34.
Didari
,
S.
,
Harris
,
T. A.
,
Huang
,
W.
,
Tessier
,
S. M.
, and
Wang
,
Y.
,
2012
, “
Feasibility of Periodic Surface Models to Develop Gas Diffusion Layers: A Gas Permeability Study
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14427
14438
.
35.
Yang
,
N.
,
Gao
,
L.
, and
Zhou
,
K.
,
2015
, “
Simple Method to Generate and Fabricate Stochastic Porous Scaffolds
,”
Mater. Sci. Eng.: C
,
56
, pp.
444
450
.
36.
Xiao
,
F.
, and
Yin
,
X.
,
2016
, “
Geometry Models of Porous Media Based on Voronoi Tessellations and Their Porosity–Permeability Relations
,”
Comput. Math. Appl.
,
72
(
2
), pp.
328
348
.
37.
Avnir
,
D.
,
Farin
,
D.
, and
Pfeifer
,
P.
,
1985
, “
Surface Geometric Irregularity of Particulate Materials: The Fractal Approach
,”
J. Colloid Interface Sci.
,
103
(
1
), pp.
112
123
.
38.
Mandelbrot
,
B. B.
,
Passoja
,
D. E.
, and
Paullay
,
A. J.
,
1984
, “
Fractal Character of Fracture Surfaces of Metals
,”
Nature
,
308
(
5961
), pp.
721
722
.
39.
Wang
,
Y.
,
2010
, “
3D Fractals From Periodic Surfaces
,”
ASME
Paper No. DETC2010-29081.
40.
Huang
,
W.
,
Wang
,
Y.
, and
Rosen
,
D. W.
,
2016
, “
Material Feature Representation and Identification With Composite Surfacelets
,”
J. Comput. Des. Eng.
,
3
(
4
), pp.
370
384
.
You do not currently have access to this content.