Scattered light sensors are optical sensors commonly used in industrial applications. They are particularly well suited to characterizing surface roughness. In contrast to most geometric measuring devices, a scattered light sensor measures reflection angles of surfaces according to the principle of the so-called mirror facet model. Surfaces can be evaluated based on the statistical distribution of the surface angles, meaning the gradients. To better understand how the sensor behaves, it is helpful to create a virtual model. Ray-tracing methods are just as conceivable as purely mathematical methods based on convolution. The mathematical description is especially interesting because it promotes fundamental comprehension of angle-resolved scattered light measurement technology and requires significantly less computation time than ray-tracing algorithms. Simplified and idealized assumptions are accepted. To reduce the effort required to simulate the sensor, an attempt was made to implement an idealized mathematical model using Matlab® to be able to quickly generate information on scattered light distribution without excessive effort. Studies were conducted to determine the extent to which the results of modeling correspond to the transfer characteristics of a virtual Zemax sensor, on the one hand, and with the measurement results of the actual scattered light sensor, on the other hand.

References

References
1.
Elson
,
J. M.
, and
Bennett
,
J. M.
,
1979
, “
Relation Between the Angular Dependence of Scattering and the Statistical Properties of Optical Surfaces
,”
J. Opt. Soc. Am.
,
69
(
1
), p.
31
.
2.
Elson
,
J. M.
, and
Bennett
,
J. M.
,
1979
, “
Vector Scattering Theory
,”
Opt. Eng.
,
18
(
2
), p.
182116
.
3.
Rodríguez-Herrera
,
O. G.
,
Rosete-Aguilar
,
M.
, and
Bruce
,
N. C.
,
2004
, “
Scatterometer of Visible Light for 2D Rough Surfaces
,”
Rev. Sci. Instrum.
,
75
(
11
), p.
4820
.
4.
Seewig
,
J.
,
Damm
,
T.
,
Frasch
,
J.
,
Kauven
,
D.
,
Rau
,
S.
, and
Schnebele
,
J.
,
2009
, “
Reconstruction of Shape Using Gradient Measuring Optical Systems
,”
Fringe 2009
,
W.
Osten
, and
Kujawinska
,
M.
, eds.,
Springer
,
Berlin
, pp.
1
7
.
5.
Seewig
,
J.
,
Lehmann
,
P. H.
,
Beichert
,
G.
,
Brodmann
,
R.
,
Bodschwinna
,
H.
, and
Wendel
,
M.
,
2009
, “
Extraction of Shape and Roughness Using Scattering Light
,”
Proc. SPIE 7389, Optical Measurement Systems for Industrial Inspection VI
, Paper No. 73890N.
6.
Trost
,
M.
,
Herffurth
,
T.
,
Schmitz
,
D.
,
Schröder
,
S.
,
Duparré
,
A.
, and
Tünnermann
,
A.
,
2013
, “
Evaluation of Subsurface Damage by Light Scattering Techniques
,”
Appl. Opt.
,
52
(
26
), p.
6579
.
7.
Schröder
,
S.
,
Herffurth
,
T.
,
Blaschke
,
H.
, and
Duparré
,
A.
,
2011
, “
Angle-Resolved Scattering: An Effective Method for Characterizing Thin-Film Coatings
,”
Appl. Opt.
,
50
(
9
), p.
C164
.
8.
Nadal
,
M. E.
,
Early
,
E. A.
, and
Thompson
,
A.
,
2006
, “
Specular Gloss
,” United States Department of Commerce, Technology Administration, Physics Laboratory, Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD,
NIST
Special Publication SP250–70.
9.
VDA
,
2010
,
Oberflächenbeschaffenheit: Geometrische Produktspezifikation; winkelaufgelöste Streulichtmesstechnik; Definition, Kenngrößen und Anwendung
,
2010th ed.
,
Verband der Automobilindustrie
,
Berlin
.
10.
Schröder
,
S.
,
Duparré
,
A.
,
Coriand
,
L.
,
Tünnermann
,
A.
,
Penalver
,
D. H.
, and
Harvey
,
J. E.
,
2011
, “
Modeling of Light Scattering in Different Regimes of Surface Roughness
,”
Opt. Express
,
19
(
10
), p.
9820
.
11.
Pedrotti
,
F. L.
,
2008
,
Optik für Ingenieure: Grundlagen; mit 28 Tabellen
,
4th ed.
,
Springer
,
Berlin
.
You do not currently have access to this content.