This work presents an approach to simulate laser cutting of ceramic substrates utilizing a phase field model for brittle fracture. To start with, the necessary thermoelastic extension of the original phase field model is introduced. Here, the Beer–Lambert law is used in order to model the effect of the laser on the substrate. The arising system of partial differential equations—which comprises the balance of linear momentum, the energy balance, and the evolution equation that governs crack propagation—is solved by a monolithic finite-element scheme. Finally, the influences of the laser power and the initial groove size on the manufactured work piece are analyzed numerically in simulations of a laser-cutting process.

References

References
1.
Garibotti
,
D.
,
1963
, “
Dicing of Micro-Semiconductors
,” U.S. Patent No. 3,112,850.
2.
Lumley
,
R. M.
,
1969
, “
Controlled Separation of Brittle Materials Using a Laser
,”
Am. Ceram. Soc. Bull.
,
48
(
4
), pp.
850
854
.
3.
Lambert
,
E.
,
Lambert
,
J.
, and
De Longueville
,
B.
,
1976
, “
Severing of Glass or Vitrocrystalline Bodies
,” U.S. Patent No. 3,935,419.
4.
Kondratenko
,
V.
,
1997
, “
Method of Splitting Non-Metallic Materials
,” U.S. Patent No. 5,609,284.
5.
Tsai
,
C.-H.
, and
Chen
,
H.-W.
,
2003
, “
Laser Cutting of Thick Ceramic Substrates by Controlled Fracture Technique
,”
J. Mater. Process. Technol.
,
136
(
1–3
), pp.
166
173
.
6.
Nisar
,
S.
,
Sheikh
,
M.
,
Li
,
L.
, and
Safdar
,
S.
,
2009
, “
Effect of Thermal Stresses on Chip-Free Diode Laser Cutting of Glass
,”
Opt. Laser Technol.
,
41
(
3
), pp.
318
327
.
7.
Wells
,
G. N.
, and
Sluys
,
L. J.
,
2001
, “
A New Method for Modelling Cohesive Cracks Using Finite Elements
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2667
2682
.
8.
Linder
,
C.
, and
Armero
,
F.
,
2009
, “
Finite Elements With Embedded Branching
,”
Finite Elem. Anal. Des.
,
45
(
4
), pp.
280
293
.
9.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
10.
Karma
,
A.
,
Kessler
,
D. A.
, and
Levine
,
H.
,
2001
, “
Phase-Field Model of mode III Dynamic Fracture
,”
Phys. Rev. Lett.
,
87
(
4
), p.
45501
.
11.
Bourdin
,
B.
,
1998
, “
Une méthode variationnelle en mécanique de la rupture
,” Ph.D. thesis, Université Paris-Nord, Villetaneuse, France.
12.
Borden
,
M. J.
,
Verhoosel
,
C. V.
,
Scott
,
M. A.
,
Hughes
,
T. J. R.
, and
Landis
,
C. M.
,
2012
, “
A Phase-Field Description of Dynamic Brittle Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
217–220
, pp.
77
95
.
13.
Miehe
,
C.
,
Schänzel
,
L.
, and
Ulmer
,
H.
,
2015
, “
Phase Field Modeling of Fracture in Multi-Physics Problems—Part I: Balance of Crack Surface and Failure Criteria for Brittle Crack Propagation in Thermo-Elastic Solids
,”
CMAME
,
294
, pp.
449
485
.
14.
Kuhn
,
C.
, and
Müller
,
R.
,
2010
, “
A Continuum Phase Field Model for Fracture
,”
Eng. Fract. Mech.
,
77
(
18
), pp.
3625
3634
.
15.
Kuhn
,
C.
, and
Müller
,
R.
,
2009
, “
Phase Field Simulation of Thermomechanical Fracture
,”
PAMM
,
9
(
1
), pp.
191
192
.
16.
Amor
,
H.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2009
, “
Regularized Formulation of the Variational Brittle Fracture With Unilateral Contact: Numerical Experiments
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1209
1229
.
17.
Strobl
,
M.
, and
Seelig
,
T.
,
2015
, “
A Novel Treatment of Crack Boundary Conditions in Phase Field Models of Fracture
,”
PAMM
,
15
(
1
), pp.
155
156
.
18.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger
,
F.
,
2010
, “
A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2765
2778
.
19.
Zohdi
,
T.
,
2014
, “
Additive Particle Deposition and Selective Laser Processing—A Computational Manufacturing Framework
,”
Comput. Mech.
,
54
(
1
), pp.
171
191
.
20.
Kuhn
,
C.
,
Schlüter
,
A.
, and
Müller
,
R.
,
2015
, “
On Degradation Functions in Phase Field Fracture Models
,”
Computational Materials Science
,
108
(
Part B
), pp. 374–384.
21.
Bourdin
,
B.
,
2007
, “
Numerical Implementation of the Variational Formulation of Quasi-Static Brittle Fracture
,”
Interfaces Free Boundaries
,
9
(3), pp.
411
430
.
22.
Hofacker
,
M.
, and
Miehe
,
C.
,
2013
, “
A Phase Field Model of Dynamic Fracture: Robust Field Updates for the Analysis of Complex Crack Patterns
,”
Int. J. Numer. Methods Eng.
,
93
(
3
), pp.
276
301
.
23.
Schlüter
,
A.
,
Willenbücher
,
A.
,
Kuhn
,
C.
, and
Müller
,
R.
,
2014
, “
Phase Field Approximation of Dynamic Brittle Fracture
,”
Comput. Mech.
,
54
(5), pp.
1
21
.
24.
Kuhn
,
C.
,
2013
, “
Numerical and Analytical Investigation of a Phase Field Model for Fracture
,” Ph.D. thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
You do not currently have access to this content.