Environmental effectiveness refers to the influence and harm on products and materials resulting from the effects of various environmental factors. In their actual usage in a complex environment, products are put forward to address a series of urgent engineering problems caused by environmental effectiveness. However, environmental effectiveness is not extensively studied, and it is not sufficiently considered in the process of product reliability design and analysis. To solve these issues, we apply an ontology and rule reasoning method to design an ontology-based environmental effectiveness knowledge application system. The system comprises four layers: ontology, reasoning, data storage, and knowledge application. With the use of this system, specific measures for possible product failures caused by the environment can be deduced on the basis of the existing environment and failure data. This system can satisfy the requirements for extracting useful environmental effectiveness knowledge from large data to assist reliability designers in realizing complete reliability designs. A semi-intelligent analysis for environmental effectiveness can be applied to reliability analysis and design works. Finally, a case study of a rubber seal for environment protection design is presented to illustrate the applications of the system.

References

1.
Ito
,
M.
, and
Nagai
,
K.
,
2008
, “
Degradation Issues of Polymer Materials Used in Railway Field
,”
Polym. Degrad. Stab.
,
93
(
10
), pp.
1723
1735
.
2.
Soares
,
C. G.
,
Garbatov
,
Y.
,
Zayed
,
A.
, and
Wang
,
G.
,
2009
, “
Influence of Environmental Factors on Corrosion of Ship Structures in Marine Atmosphere
,”
Corros. Sci.
,
51
(
9
), pp.
2014
2026
.
3.
Dan
,
Z.
,
Muto
,
I.
, and
Hara
,
N.
,
2012
, “
Effects of Environmental Factors on Atmospheric Corrosion of Aluminium and Its Alloys Under Constant Dew Point Conditions
,”
Corros. Sci.
,
57
, pp.
22
29
.
4.
Wu
,
J. Y.
,
2012
, “
Influence of Pseudomonas on Corrosion and Mechanical Properties of Carbon Steel in Sea Water
,”
Corros. Eng., Sci. Technol.
,
47
(
2
), pp.
91
95
.
5.
Nasser
,
Y. A. A.
, Shama, M. A., Leheta, H. W., and Zayed, A. S.,
2002
, “
Reliability of Double Hull Tanker Plates Subjected to Different Loads With Corrosion Effects
,”
Alexandria Eng. J.
,
41
(
4
), pp.
587
597
.
6.
Melchers
,
R. E.
,
2003
, “
Probabilistic Model for Marine Corrosion of Steel for Structural Reliability Assessment
,”
ASCE J. Struct. Eng.
,
129
(
11
), pp.
1484
1493
.
7.
Melchers
,
R. E.
,
2005
, “
The Effect of Corrosion on the Structural Reliability of Steel Offshore Structures
,”
Corros. Sci.
,
47
(
10
), pp.
2391
2410
.
8.
Molina
,
M.
, and
Flores
,
V.
,
2012
, “
Generating Multimedia Presentations That Summarize the Behavior of Dynamic Systems Using a Model-Based Approach
,”
Expert Syst. Appl.
,
39
(
3
), pp.
2759
2770
.
9.
Sheth
,
A.
,
Henson
,
C.
, and
Sahoo
,
S. S.
,
2008
, “
Semantic Sensor Web
,”
IEEE Internet Comput.
,
12
(
4
), pp.
78
83
.
10.
Domingue
,
J.
,
Roman
,
D.
, and
Stollberg
,
M.
,
2005
, “
Web Service Modeling Ontology (WSMO): An Ontology for Semantic Web Services
,”
W3C Workshop on Frameworks for Semantics in Web Services
, Innsbruck, Austria, June 9–10.http://www.w3.org/2005/04/FSWS/Submissions/1/wsmo_position_paper.html
11.
Tumer
,
I. Y.
, and
Smidts
,
C. S.
,
2011
, “
Integrated Design-Stage Failure Analysis of Software Driven Hardware Systems
,”
IEEE Trans. Comput.
,
60
(
8
), pp.
1072
1084
.
12.
Kurtoglu
,
T.
,
Tumer
,
I. Y.
, and
Jensen
,
D.
,
2010
, “
A Functional Failure Reasoning Methodology for Evaluation of Conceptual System Architectures
,”
Res. Eng. Des.
,
21
(
4
), pp.
209
234
.
13.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Graph Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051401
.
14.
Sierla
,
S.
,
Tumer
,
I.
,
Papakonstantinou
,
N.
,
Koskinen
,
K.
, and
Jensen
,
D.
,
2012
, “
Early Integration of Safety to the Mechatronic System Design Process by the Functional Failure Identification and Propagation Framework
,”
Mechatronics
,
22
(
2
), pp.
137
151
.
15.
Lin
,
J.
,
Keogh
,
E.
,
Lonardi
,
S.
, and
Chiu
,
B.
,
2003
, “
A Symbolic Representation of Time Series, With Implications for Streaming Algorithms
,”
Eighth ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
, pp.
2
11
.
16.
Gruber
,
T. R.
,
1993
, “
A Translation Approach to Portable Ontology Specifications
,”
Knowl. Acquis.
,
5
(
2
), pp.
199
220
.
17.
Nico
,
B. W.
,
1997
, “
Construction of Engineering Ontologies for Knowledge Sharing and Reuse
,” CTIT Ph.D. dissertation, University of Twente, Enschede, The Netherlands.
18.
Studer
,
R.
,
Benjamins
,
V. R.
, and
Fensel
,
D.
,
1998
, “
Knowledge Engineering: Principles and Methods
,”
Data Knowl. Eng.
,
25
(
1
), pp.
161
197
.
19.
Maedche
,
A.
, and
Staab
,
S.
,
2002
, “
Ontology Learning for the Semantic Web
,”
IEEE Intell. Syst.
,
16
(
16
), pp.
72
79
.
20.
Berners-Lee
,
T.
,
Hendler
,
J.
, and
Lassila
,
O.
,
2001
, “
The Semantic Web
,”
Sci. Am.
,
284
(
5
), pp.
34
43
.
21.
Guarino
,
N.
,
1998
, “
Formal Ontology and Information Systems
,”
International Conference on Formal Ontology in Information Systems
, FOIS, pp.
3
15
.
22.
Mcguiness
,
D. L.
, and
Harmelen
,
F. V.
,
2004
, “
OWL Web Ontology Language Overview: W3C Recommendation (10 February 2004)
,”
W3C Recomm.
,
63
(
45
), pp.
990
996
.https://www.researchgate.net/publication/247090293_Owl_Web_Ontology_Language_Overview_W3C_Recommendation_10_February_2004
23.
Horridge
,
M.
,
Knublauch
,
H.
,
Rector
,
A.
,
Stevens
,
R.
, and
Wroe
,
C.
,
2004
, “
A Practical Guide to Building OWL Ontologies Using the Protege-OWL Plugin and CO-ODE Tools Edition 1.0
,”
Workshop on OWL: Experiences and Directions, Fourth International Semantic Web Conference (ISWC2005)
, Galway, Ireland, The University of Manchester, Manchester, UK.https://www.researchgate.net/publication/230585369_A_practical_guide_to_building_OWL_ontologies_using_the_Protege-OWL_plugin_and_CO-ODE_tools_Edition_10
24.
Kitamura
,
Y.
,
Sano
,
T.
,
Namba
,
K.
, and
Mizoguchi
,
R.
,
2002
, “
A Functional Concept Ontology and Its Application to Automatic Identification of Functional Structures
,”
Adv. Eng. Inf.
,
16
(
2
), pp.
145
163
.
25.
Kitamura
,
Y.
, and
Mizoguchi
,
R.
,
2004
, “
Ontology-Based Systematization of Functional Knowledge
,”
J. Eng. Des.
,
15
(
4
), pp.
327
351
.
26.
Lutz
,
M.
, and
Klien
,
E.
,
2006
, “
Ontology-Based Retrieval of Geographic Information
,”
Int. J. Geogr. Inf. Sci.
,
20
(
3
), pp.
233
260
.
27.
Klien
,
E.
,
Lutz
,
M.
, and
Kuhn
,
W.
,
2006
, “
Ontology-Based Discovery of Geographic Information Services—An Application in Disaster Management
,”
Comput. Environ. Urban Syst.
,
30
(
1
), pp.
102
123
.
28.
Ceccaroni
,
L.
,
Cortes
,
U.
, and
Sanchez-Marre
,
M.
,
2004
, “
OntoWEDSS: Augmenting Environmental Decision-Support Systems With Ontologies
,”
Environ. Modell. Software
,
19
(
9
), pp.
785
797
.
29.
Ma
,
X.
,
Zheng
,
J. G.
,
Goldstein
,
J. C.
,
Zednik
,
S.
,
Fu
,
L.
,
Duggan
,
B.
,
Aulenbach
,
S. M.
,
West
,
P.
,
Tilmes
,
C.
, and
Fox
,
P.
,
2014
, “
Ontology Engineering in Provenance Enablement for the National Climate Assessment
,”
Environ. Modell. Software
,
61
, pp.
191
205
.
30.
Lee
,
J. H.
, and
Suh
,
H. W.
,
2007
, “
OWL-Based Product Ontology Architecture and Representation for Sharing Product Knowledge on a Web
,”
ASME
Paper No. DETC2007-35312.
31.
Lee
,
T.
,
Lee
,
I. H.
,
Lee
,
S.
,
Lee
,
S. G.
,
Kim
,
D.
, and
Chun
,
J.
,
2006
, “
Building an Operational Product Ontology System
,”
Electron. Commer. Res. Appl.
,
5
(
1
), pp.
16
28
.
32.
Kim
,
K. Y.
,
Manley
,
D. G.
, and
Yang
,
H.
,
2006
, “
Ontology-Based Assembly Design and Information Sharing for Collaborative Product Development
,”
Comput.-Aided Des.
,
38
(
12
), pp.
1233
1250
.
33.
Ebrahimipour
,
V.
,
2010
, “
An Ontology Approach to Support FMEA Studies
,”
Expert Syst. Appl.
,
37
(
1
), pp.
671
677
.
34.
Ren
,
Y.
,
Sun
,
B.
,
Feng
,
Q.
, and
Zeng
,
S.
,
2011
, “
Ontological Multi-View Failure Modeling for IPPD
,”
Maint. Reliab.
,
50
(2), pp.
35
41
.
35.
Horrocks
,
I.
,
Patel-Schneider
,
P. F.
,
Boley
,
H.
,
Tabet
,
S.
,
Grosof
,
B.
, and
Dean
,
M.
,
2004
, “
SWRL: A Semantic Web Rule Language Combining OWL and RuleML
,”
W3C Member Submission
, W3C, Cambridge, MA.http://www.w3.org/Submission/SWRL/
36.
Saa
,
R.
,
Garcia
,
A.
,
Gomez
,
C.
,
Carretero
,
J.
, and
Garcia-Carballeira
,
F.
,
2012
, “
An Ontology-Driven Decision Support System for High-Performance and Cost-Optimized Design of Complex Railway Portal Frames
,”
Expert Syst. Appl.
,
39
(
10
), pp.
8784
8792
.
37.
Eum
,
K.
,
Kang
,
M.
,
Kim
,
G.
,
Park
,
M. W.
, and
Kim
,
J. K.
,
2013
, “
Ontology-Based Modeling of Process Selection Knowledge for Machining Feature
,”
Int. J. Precis. Eng. Manuf.
,
14
(
10
), pp.
1719
1726
.
38.
Sanya
,
I. O.
, and
Shehab
,
E. M.
,
2014
, “
An Ontology Framework for Developing Platform-Independent Knowledge-Based Engineering Systems in the Aerospace Industry
,”
Int. J. Prod. Res.
,
52
(
20
), pp.
6192
6215
.
39.
Sun
,
B.
,
Li
,
Y.
,
Yung
,
K.-C.
,
Feng
,
Q.
, and
Ren
,
Y.
,
2015
, “
Environmental Effectiveness Ontology Based Method for Enhancing FMECA
,”
25th Europe Safety and Reliability Conference, ESREL
, pp.
1725
1732
.
40.
Sun
,
B.
,
Li
,
Y.
,
Ye
,
T.
, and
Ren
,
Y.
,
2015
, “
A Novel Ontology Approach to Support Design for Reliability Considering Environmental Effects
,”
Sci. World J.
,
2015
, p.
734984
.
41.
Yoo
,
D.
, and
No
,
S.
,
2014
, “
Ontology-Based Economics Knowledge Sharing System
,”
Expert Syst. Appl.
,
41
(
4
), pp.
1331
1341
.
42.
Skowron
,
A.
, and
Rauszer
,
C.
,
1992
, “
The Discernibility Matrices and Functions in Information Systems
,”
Intelligent Decision Support
(Theory and Decision Library), Vol.
11
, Springer, Heidelberg, Germany, pp.
331
362
.
43.
Pawlak
,
Z.
, and
Skowron
,
A.
,
2007
, “
Rudiments of Rough Sets
,”
Inf. Sci.
,
177
(
1
), pp.
3
27
.
You do not currently have access to this content.