Tracking refers to a set of techniques that allows one to calculate the position and orientation of an object with respect to a global reference coordinate system in real time. A common method for tracking with point clouds is the iterative closest point (ICP) algorithm, which relies on the continuous matching of sequential sampled point clouds with a reference point cloud. Modern commodity range cameras provide point cloud data that can be used for that purpose. However, this point cloud data is generally considered as low-fidelity and insufficient for accurate object tracking. Mesh reconstruction algorithms can improve the fidelity of the point cloud by reconstructing the overall shape of the object. This paper explores the potential for point cloud fidelity improvement via the Poisson mesh reconstruction (PMR) algorithm and compares the accuracy with a common ICP-based tracking technique and a local mesh reconstruction operator. The results of an offline simulation are promising.

References

References
1.
Besl
,
P.
, and
McKay
,
N.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.
2.
Zhang
,
Z.
,
1992
,
On Local Matching of Free-Form Curves
,
Springer
,
London
, pp.
347
356
.
3.
Segal
,
A.
,
Haehnel
,
D.
, and
Thrun
,
S.
,
2010
, “
Generalized-ICP
,”
Robotics: Science and Systems
, Vol.
2
, J. Trinkle, ed., The MIT Press, Cambridge, MA, pp. 161–168.
4.
Fitzgibbon
,
A. W.
,
2003
, “
Robust Registration of 2D and 3D Point Sets
,”
Image Vision Comput.
,
21
(
13
), pp.
1145
1153
.
5.
Prasad
,
T.
,
Hartmann
,
K.
,
Weihs
,
W.
,
Ghobadi
,
S. E.
, and
Sluiter
,
A.
,
2006
, “
First Steps in Enhancing 3D Vision Technique Using 2D/3D Sensors
,”
Computer Vision Winter Workshop
, pp.
82
86
.
6.
Yang
,
Q.
,
Yang
,
R.
,
Davis
,
J.
, and
Nister
,
D.
,
2007
, “
Spatial-Depth Super Resolution for Range Images
,”
IEEE Conference on Computer Vision and Pattern Recognition
, CVPR, pp.
1
8
.
7.
Zhu
,
J.
,
Wang
,
L.
,
Yang
,
R.
,
Davis
,
J. E.
, and
Pan
,
Z.
,
2011
, “
Reliability Fusion of Time-of-Flight Depth and Stereo Geometry for High Quality Depth Maps
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
33
(
7
), pp.
1400
1414
.
8.
Kowalczuk
,
J.
,
Psota
,
E.
, and
Perez
,
L.
,
2013
, “
Real-Time Stereo Matching on CUDA Using an Iterative Refinement Method for Adaptive Support-Weight Correspondences
,”
IEEE Trans. Circuits Syst. Video Technol.
,
23
(
1
), pp.
94
104
.
9.
Jung
,
S.-W.
, and
Choi
,
O.
,
2014
, “
Learning-Based Filter Selection Scheme for Depth Image Super Resolution
,”
IEEE Trans. Circuits Syst. Video Technol.
,
24
(
10
), pp.
1641
1650
.
10.
Nguyen
,
C.
,
Izadi
,
S.
, and
Lovell
,
D.
,
2012
, “
Modeling Kinect Sensor Noise for Improved 3D Reconstruction and Tracking
,”
Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT)
, pp.
524
530
.
11.
Zhang
,
G.
,
Lei
,
M.
, and
Liu
,
X.
,
2009
, “
Novel Template Matching Method With Sub-Pixel Accuracy Based on Correlation and Fourier-Mellin Transform
,”
Opt. Eng.
,
48
(
5
), p.
057001
.
12.
Awange
,
J.
,
Paláncz
,
B.
, and
Lewis
,
R.
,
2014
, “
Maximizing Likelihood Function for Parameter Estimation in Point Clouds Via Groebner Basis
,”
Mathematical Software—ICMS
, H. Hong and C. Yap, eds., Springer, Berlin, pp.
359
366
.
13.
Stoyanov
,
T.
, and
Lilienthal
,
A.
,
2009
, “
Maximum Likelihood Point Cloud Acquisition From a Mobile Platform
,”
International Conference on Advanced Robotics
, ICAR, pp.
1
6
.
14.
Grisetti
,
G.
,
Grzonka
,
S.
,
Stachniss
,
C.
,
Pfaff
,
P.
, and
Burgard
,
W.
,
2007
, “
Efficient Estimation of Accurate Maximum Likelihood Maps in 3D
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, IROS, pp.
3472
3478
.
15.
Huang
,
A. S.
,
Bachrach
,
A.
,
Henry
,
P.
,
Krainin
,
M.
,
Maturana
,
D.
,
Fox
,
D.
, and
Roy
,
N.
,
2011
, “
Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera
,”
International Symposium on Robotics Research (ISRR)
, Aug. 28–Sept. 1, Flagstaff, AZ.http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Huang-ISRR-2011.pdf
16.
Pereira
,
N.
, and
Sitek
,
A.
,
2011
, “
An SVD Based Analysis of the Noise Properties of a Point Cloud Mesh Reconstruction Method
,”
IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
, pp.
4135
4142
.
17.
Moghari
,
M. H.
, and
Abolmaesumi
,
P.
,
2008
, “
Maximum Likelihood Estimation of the Distribution of Target Registration Error
,”
Proc. SPIE
,
6918
, p.
69180I
.
18.
Gasparovic
,
M.
, and
Malaric
,
I.
,
2012
, “
Increase of Readability and Accuracy of 3D Models Using Fusion of Close Range Photogrammetry and Laser Scanning
,”
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
,
39
(B5), pp.
93
98
.
19.
Tascon Vidarte
,
J.
, and
Loaiza Correa
,
H.
,
2014
, “
Consistent 3D Models From Unorganized RGB-D Images
,”
IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE)
, pp.
1
6
.
20.
Hara
,
Y.
,
Bando
,
S.
,
Tsuboucffl
,
T.
,
Oshima
,
A.
,
Kitahara
,
I.
, and
Kameda
,
Y.
,
2013
, “
6DOF Iterative Closest Point Matching Considering a Priori With Maximum a Posteriori Estimation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
4172
4179
.
21.
Kim
,
Y. M.
,
Mitra
,
N. J.
,
Yan
,
D.-M.
, and
Guibas
,
L.
,
2012
, “
Acquiring 3D Indoor Environments With Variability and Repetition
,”
ACM Trans. Graphics
,
31
(
6
), p.
138
.
22.
Wells
,
L. J.
,
Shafae
,
M. S.
, and
Camelio
,
J. A.
,
2013
, “
Automated Part Inspection Using 3D Point Clouds
,”
ASME
Paper No. MSEC2013-1212.
23.
Tucker
,
T. M.
, and
Kurfess
,
T. R.
,
2006
, “
Point Cloud to CAD Model Registration Methods in Manufacturing Inspection
,”
ASME J. Comput. Inf. Sci. Eng.
,
6
(
4
), pp.
418
421
.
24.
Grimm
,
C. M.
,
Crisco
,
J. J.
, and
Laidlaw
,
D. H.
,
2001
, “
Fitting Manifold Surfaces to Three-Dimensional Point Clouds
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
136
140
.
25.
Shi
,
Q.
,
Xi
,
N.
, and
Zhang
,
C.
,
2010
, “
Develop a Robot-Aided Area Sensing System for 3D Shape Inspection
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
014502
.
26.
Miller
,
A.
,
White
,
B.
,
Charbonneau
,
E.
,
Kanzler
,
Z.
, and
LaViola
,
J. J.
,
2012
, “
Interactive 3D Model Acquisition and Tracking of Building Block Structures
,”
IEEE Trans. Visualization Comput. Graphics
,
18
(
4
), pp.
651
659
.
27.
Gupta
,
A.
,
Fox
,
D.
,
Curless
,
B.
, and
Cohen
,
M.
,
2012
, “
DuploTrack: A Real-Time System for Authoring and Guiding DUPLO Block Assembly
,”
25th Annual ACM Symposium on User Interface Software and Technology
, pp.
389
402
.
28.
Khuong
,
B. M.
,
Kiyokawa
,
K.
,
Mashita
,
T.
,
Miller
,
A.
,
Takemura
,
H.
, and
La Viola
,
J. J.
,
2014
, “
The Effectiveness of an AR-Based Context-Aware Assembly Support System in Object Assembly
,”
IEEE Virtual Reality (VR)
, pp.
57
62
.
29.
Salas-Moreno
,
R. F.
,
Newcombe
,
R. A.
,
Strasdat
,
H.
,
Kelly
,
P. H. J.
, and
Davison
,
A. J.
,
2013
, “
Slam++: Simultaneous Localisation and Mapping at the Level of Objects
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp.
1352
1359
.
30.
Newcombe
,
R. A.
,
Izadi
,
S.
,
Hilliges
,
O.
,
Molyneaux
,
D.
,
Kim
,
D.
,
Davison
,
A. J.
,
Kohli
,
P.
,
Shotton
,
J.
,
Hodges
,
S.
, and
Fitzgibbon
,
A.
,
2011
, “
Kinectfusion: Real-Time Dense Surface Mapping and Tracking
,”
10th IEEE International Symposium on Mixed and Augmented Reality
, ISMAR’11, IEEE Computer Society, pp.
127
136
.
31.
Rusinkiewicz
,
S.
, and
Levoy
,
M.
,
2001
, “
Efficient Variants of the ICP Algorithm
,”
IEEE International Workshop on 3D Digital Imaging and Modeling (3DIM)
, pp.
145
152
.
32.
Garrett
,
T.
,
Debernardis
,
S.
,
Radkowski
,
R.
,
Chang
,
C. K.
,
Fiorentino
,
M.
,
Uva
,
A. E.
, and
Oliver
,
J.
,
2014
, “
Rigid Object Tracking Algorithms for Low-Cost AR Devices
,”
ASME
Paper No. DETC2014-35304.
33.
Radkowski
,
R.
,
2015
, “
Object Tracking With a Range Camera for Augmented Reality Assembly Assistance
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
1
), pp.
1
8
.
34.
Greenspan
,
M.
, and
Yurick
,
M.
,
2003
, “
Approximate K-D Tree Search for Efficient ICP
,”
Fourth International Conference on 3-D Digital Imaging and Modeling
, 3DIM, pp.
442
448
.
35.
Arun
,
K.
,
Huang
,
T. S.
, and
Blostein
,
S. D.
,
1987
, “
Least-Squares Fitting of Two 3-D Point Sets
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-9
(
5
), pp.
698
700
.
36.
Kazhdan
,
M.
,
Bolitho
,
M.
, and
Hoppe
,
H.
,
2006
, “
Poisson Surface Reconstruction
,”
Fourth Eurographics Symposium on Geometry Processing
, Eurographics Association, pp.
61
70
.
37.
Holz
,
D.
, and
Behnke
,
S.
,
2012
, “
Fast Range Image Segmentation and Smoothing Using Approximate Surface Reconstruction and Region Growing
,”
12th International Conference on Intelligent Autonomous Systems (IAS)
, Jeju Island, Korea, June 26–29, pp. 61–73.
38.
Radkowski
,
R.
,
2015
, “
A Point Cloud-Based Method for Object Alignment Verification for Augmented Reality Applications
,”
ASME
Paper No. DETC2015-47842.
39.
Chen
,
Y.
, and
Medioni
,
G.
,
1991
, “
Object Modeling by Registration of Multiple Range Images
,”
IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2724
2729
.
40.
Ridene
,
T.
, and
Goulette
,
F.
,
2009
, “
Registration of Fixed-and-Mobile-Based Terrestrial Laser Data Sets With DSM
,”
IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA)
, pp.
375
380
.
This content is only available via PDF.
You do not currently have access to this content.