Exchanging computer-aided design (CAD) model data among heterogeneous CAD systems is indispensable for collaborative product development. Currently, the industry mainly uses the standardized neutral files-based methods to implement such exchange. While at the same time, the application of web ontology language (OWL) file and underlying semantic web technologies in CAD model data exchange is gaining importance and popularity within the academia. The coexistence of different types of methods has generated a series of controversies and questions within the industry and the academia. Yet, can the neutral files-based exchange methods completely implement model data exchange among heterogeneous CAD systems? What challenges have been addressed to date by the developed CAD model data exchange standards? Why OWL has been introduced to CAD model data exchange? Does CAD model data exchange really need OWL? Are there any issues in existing neutral files-based exchange methods and OWL file-based exchange methods need to be addressed in future studies? This paper proposes to conduct a study of the standardized neutral files-based exchange methods and OWL file-based exchange methods. An in-depth analysis of the widely used standard for the exchange of product model data (STEP) method and the newly emerging OWL methods is first provided. Then, the paper makes a detailed comparison between these two types of methods based on this analysis. Finally, some issues in the two types of methods that need to be addressed in the future are discussed.

References

1.
Xu
,
X.
,
2008
,
Integrating Advanced Computer-Aided Design, Manufacturing, and Numerical Control: Principles and Implementations
,
Information Science Reference
,
New York
.
2.
Autodesk
,
2011
, “
DXF Reference
,” Autodesk, Inc., San Rafael, CA.
3.
ASME Y14.26M
,
1989
, “
Digital Representation for Communication of Product Definition Data
,” ASME, New York.
4.
ISO
,
1994
, “
Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 1: Overview and Fundamental Principles
,” ISO, Geneva, Switzerland, Standard No. ISO 10303-1.
5.
McGuinness
,
D. L.
, and
Harmelen
,
F. V.
,
2004
, “
OWL Web Ontology Language Overview
,” last accessed Jan. 18, 2016, http://www.w3.org/TR/owl-features/
6.
Berners-Lee
,
T.
,
Hendler
,
J.
, and
Lassila
,
O.
,
2001
, “
The Semantic Web
,”
Sci. Am.
,
284
(
5
), pp.
28
37
.http://www.scientificamerican.com/article/the-semantic-web/
7.
Gerbino
,
S.
,
2003
, “
Tools for the Interoperability Among CAD Systems
,”
International Conference on Tools and Methods Evolution in Engineering Design
, Cassino, Naples, and Salerno, Italy, June 3–5, pp.
137
149
.
8.
Fenves
,
S. J.
,
Sriram
,
R. D.
,
Subrahmanian
,
E.
, and
Rachuri
,
S.
,
2005
, “
Product Information Exchange: Practices and Standards
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
238
246
.
9.
Bianconi
,
F.
,
Conti
,
P.
, and
Di Angelo
,
L.
,
2006
, “
Interoperability Among CAD/CAM/CAE Systems: A Review of Current Research Trends
,”
Conference on Geometric Modeling and Imaging: New Trends
,
IEEE
,
New York
, pp.
82
89
.
10.
Srinivasan
,
V.
,
2008
, “
Standardizing the Specification, Verification, and Exchange of Product Geometry: Research, Status and Trends
,”
Comput.-Aided Des.
,
40
(
7
), pp.
738
749
.
11.
Gielingh
,
W.
,
2008
, “
An Assessment of the Current State of Product Data Technologies
,”
Comput.-Aided Des.
,
40
(
7
), pp.
750
759
.
12.
Rachuri
,
S.
,
Subrahmanian
,
E.
,
Bouras
,
A.
,
Fenves
,
S. J.
,
Foufou
,
S.
, and
Sriram
,
R. D.
,
2008
, “
Information Sharing and Exchange in the Context of Product Lifecycle Management: Role of Standards
,”
Comput.-Aided Des.
,
40
(
7
), pp.
789
800
.
13.
Fortineau
,
V.
,
Paviot
,
T.
, and
Lamouri
,
S.
,
2013
, “
Improving the Interoperability of Industrial Information Systems With Description Logic-Based Models—The State of the Art
,”
Comput. Ind.
,
64
(
4
), pp.
363
375
.
14.
Gartner Report
,
2006
, “
User Survey: Mechanical CAx, Europe and North America
,” Report No. G00137912.
15.
Bloor
,
S.
, and
Owen
,
J.
,
2003
,
Product Data Exchange
,
Taylor & Francis
,
Abingdon, UK
.
16.
Pratt
,
M. J.
,
2001
, “
Introduction to ISO 10303—The STEP Standard for Product Data Exchange
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
1
), pp.
102
103
.
17.
ISO
,
2011
, “
Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 203: Application Protocol: Configuration Controlled 3D Design of Mechanical Parts and Assemblies
,” ISO, Geneva, Switzerland, Standard No. ISO 10303-203.
18.
ISO
,
2010
, “
Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 214: Application Protocol: Core Data for Automotive Mechanical Design Processes
,” ISO, Geneva, Switzerland, Standard No. ISO 10303-214.
19.
ISO
,
2004
, “
Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 11: Description Methods: The EXPRESS Language Reference Manual
,” ISO, Geneva, Switzerland, Standard No. ISO 10303-11.
20.
ISO
,
2002
, “
Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 21: Implementation Methods: Clear Text Encoding of the Exchange Structure
,” ISO, Geneva, Switzerland, Standard No. ISO 10303-21.
21.
Kim
,
J.
,
Pratt
,
M. J.
,
Iyer
,
R. G.
, and
Sriram
,
R. D.
,
2008
, “
Standardized Data Exchange of CAD Models With Design Intent
,”
Comput.-Aided Des.
,
40
(
7
), pp.
760
777
.
22.
Altidor
,
J.
,
Wileden
,
J.
,
McPherson
,
J.
,
Grosse
,
I.
,
Krishnamurty
,
S.
,
Cordeiro
,
F.
, and
John
,
A. L. S.
,
2011
, “
A Programming Language Approach to Parametric CAD Data Exchange
,”
ASME
Paper No. DETC2011-48530, pp.
779
791
.
23.
Brunnermeier
,
S. B.
, and
Martin
,
S. A.
,
1999
, “
Interoperability Cost Analysis of the U.S. Automotive Supply Chain
,” National Institute of Standards and Technology, Gaithersburg, MD.
24.
Szykman
,
S.
,
Fenves
,
S. J.
,
Keirouz
,
W.
, and
Shooter
,
S. B.
,
2001
, “
A Foundation for Interoperability in Next-Generation Product Development Systems
,”
Comput.-Aided Des.
,
33
(
7
), pp.
545
559
.
25.
ISO
,
2014
, “
Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 242: Application Protocol: Managed Model-Based 3D Engineering
,” ISO, Geneva, Switzerland, Standard No. ISO 10303-242.
26.
STEP AP242 Project organization
,
2014
, “
STEP AP242 Project
,” last accessed Jan. 18, 2016, http://www.ap242.org/
27.
CAx Implementor Forum Participants
,
2016
, “
CAx Implementor Forum
,” last accessed Jan. 18, 2016, https://cax-if.org/
28.
CAx Implementor Forum Participants
,
2016
, “
CAx IF Implementation Coverage
,” last accessed Jan. 18, 2016, https://cax-if.org/vendor_info.php
29.
Metzger
,
F.
,
1996
, “
The Challenge of Capturing the Semantics of STEP Data Models Precisely
,”
Workshop on Product Knowledge Sharing for Integrated Enterprises
, ESPRIT Project No. 9049.
30.
Krima
,
S.
,
Krima
,
R.
,
Fiorentini
,
X.
,
Sudarsan
,
R.
, and
Sriram
,
R. D.
,
2009
, “
OntoSTEP: OWL-DL Ontology for STEP
,” National Institute of Standards and Technology, Gaithersburg, MD.
31.
Sarigecili
,
M. I.
,
Roy
,
U.
, and
Rachuri
,
S.
,
2014
, “
Interpreting the Semantics of GD&T Specifications of a Product for Tolerance Analysis
,”
Comput.-Aided Des.
,
47
(
2
), pp.
72
84
.
32.
Fenves
,
S. J.
,
2002
, “
A Core Product Model for Representing Design Information
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.
33.
Rachuri
,
S.
,
Han
,
Y. H.
,
Feng
,
S. C.
,
Roy
,
U.
,
Wang
,
F.
,
Sriram
,
R. D.
, and
Lyons
,
K. W.
,
2004
, “
Object-Oriented Representation of Electro-Mechanical Assemblies Using UML
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.
34.
Baader
,
F.
,
Calvanese
,
D.
,
McGuinness
,
D. L.
,
Nardi
,
D.
, and
Patel-Schneider
,
P. F.
,
2010
,
The Description Logic Handbook: Theory, Implementation and Applications
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
35.
Gruber
,
T. R.
,
1993
, “
A Translation Approach to Portable Ontology Specifications
,”
Knowl. Acquis.
,
5
(
2
), pp.
199
220
.
36.
Negri
,
E.
,
Fumagalli
,
L.
,
Garetti
,
M.
, and
Tanca
,
L.
,
2015
, “
Requirements and Languages for the Semantic Representation of Manufacturing Systems
,”
Comput. Ind.
,
81
(
9
), pp.
55
66
.
37.
El Kadiri
,
S.
, and
Kiritsis
,
D.
,
2015
, “
Ontologies in the Context of Product Lifecycle Management: State of the Art Literature Review
,”
Int. J. Prod. Res.
,
53
(
18
), pp.
5657
5668
.
38.
Ramos
,
L.
,
2015
, “
Semantic Web for Manufacturing, Trends and Open Issues: Toward a State of the Art
,”
Comput. Ind. Eng.
,
90
(
12
), pp.
444
460
.
39.
Dartigues
,
C.
, and
Ghodous
,
P.
,
2002
, “
Product Data Exchange Using Ontologies
,”
Artificial Intelligence in Design’02
,
Springer
,
Dordrecht, The Netherlands
, pp.
617–637
.
40.
Patil
,
L.
,
Dutta
,
D.
, and
Sriram
,
R. D.
,
2005
, “
Ontology-Based Exchange of Product Data Semantics
,”
IEEE Trans. Autom. Sci. Eng.
,
2
(
3
), pp.
213
225
.
41.
Seo
,
T. S.
,
Lee
,
Y. S.
,
Cheon
,
S. U.
,
Han
,
S. H.
,
Lalit
,
P.
, and
Debasish
,
D.
,
2005
, “
Sharing CAD Models Based on Feature Ontology of Commands History
,”
Int. J. CAD/CAM
,
5
(
1
), pp.
39
47
.
42.
Kim
,
K. Y.
,
Manley
,
D. G.
, and
Yang
,
H.
,
2006
, “
Ontology-Based Assembly Design and Information Sharing for Collaborative Product Development
,”
Comput.-Aided Des.
,
38
(
12
), pp.
1233
1250
.
43.
Abdul-Ghafour
,
S.
,
Ghodous
,
P.
,
Shariat
,
B.
, and
Perna
,
E.
,
2006
, “
An Ontology-Based Approach for ‘Procedural CAD Models’ Data Exchange
,”
Leading the Web in Concurrent Engineering, Next Generation Concurrent Engineering
,
IOS Press
,
Amsterdam, The Netherlands
, pp.
251
259
.
44.
Abdul-Ghafour
,
S.
,
Ghodous
,
P.
,
Shariat
,
B.
, and
Perna
,
E.
,
2008
, “
Towards an Intelligent CAD Models Sharing Based on Semantic Web Technologies
,”
Collaborative Product and Service Life Cycle Management for a Sustainable World
,
Springer
,
London
, pp.
195
203
.
45.
Abdul-Ghafour
,
S.
,
Ghodous
,
P.
,
Shariat
,
B.
,
Perna
,
E.
, and
Khosrowshahi
,
F.
,
2014
, “
Semantic Interoperability of Knowledge in Feature-Based CAD Models
,”
Comput.-Aided Des.
,
56
(
11
), pp.
45
57
.
46.
Yang
,
Q. Z.
, and
Miao
,
C. Y.
,
2007
, “
Semantic Enhancement and Ontology for Interoperability of Design Information Systems
,”
IEEE Conference on Emerging Technologies and Factory Automation
,
IEEE
,
New York
, pp.
169
176
.
47.
Gupta
,
R. K.
, and
Gurumoorthy
,
B.
,
2008
, “
A Feature-Based Framework for Semantic Interoperability of Product Models
,”
J. Mech. Eng.
,
54
(
6
), pp.
446
457
.
48.
Tursi
,
A.
,
Panetto
,
H.
,
Morel
,
G.
, and
Dassisti
,
M.
,
2009
, “
Ontological Approach for Products-Centric Information System Interoperability in Networked Manufacturing Enterprises
,”
Annu. Rev. Control
,
33
(
2
), pp.
238
245
.
49.
Barbau
,
R.
,
Krima
,
S.
,
Rachuri
,
S.
,
Narayanan
,
A.
,
Fiorentini
,
X.
,
Foufou
,
S.
, and
Sriram
,
R. D.
,
2012
, “
OntoSTEP: Enriching Product Model Data Using Ontologies
,”
Comput.-Aided Des.
,
44
(
6
), pp.
575
590
.
50.
Panetto
,
H.
,
Dassisti
,
M.
, and
Tursi
,
A.
,
2012
, “
ONTO-PDM: Product-Driven ONTOlogy for Product Data Management Interoperability Within Manufacturing Process Environment
,”
Adv. Eng. Inf.
,
26
(
2
), pp.
334
348
.
51.
Tessier
,
S.
, and
Wang
,
Y.
,
2013
, “
Ontology-Based Feature Mapping and Verification Between CAD Systems
,”
Adv. Eng. Inf.
,
27
(
1
), pp.
76
92
.
52.
Ahmed
,
F.
, and
Han
,
S.
,
2015
, “
Interoperability of Product and Manufacturing Information Using Ontology
,”
Concurrent Eng.
,
23
(
3
), pp.
265
278
.
53.
Sriti
,
M. F.
,
Assouroko
,
I.
,
Ducellier
,
G.
,
Boutinaud
,
P.
, and
Eynard
,
B.
,
2015
, “
Ontology-Based Approach for Product Information Exchange
,”
Int. J. Prod. Lifecycle Manage.
,
8
(
1
), pp.
1
23
.
54.
He
,
L.
,
Ming
,
X.
,
Ni
,
Y.
,
Li
,
M.
,
Zheng
,
M.
, and
Xu
,
Z.
,
2015
, “
Ontology-Based Information Integration and Sharing for Collaborative Part and Tooling Development
,”
Concurrent Eng.
,
23
(
3
), pp.
199
212
.
55.
Patil
,
L.
,
2005
,
Interoperability of Formal Semantics of Product Data Across Product Development Systems
,
University of Michigan
,
Ann Arbor, MI
.
56.
Lee
,
M. J.
,
Jung
,
M.
, and
Suh
,
H. W.
,
2006
, “
Semantic Mapping Based on Ontology and a Bayesian Network and Its Application to CAD and PDM Integration
,”
ASME
Paper No. DETC2006-99419, pp.
591
602
.
57.
Zhu
,
L.
,
Jayaram
,
U.
,
Jayaram
,
S.
, and
Kim
,
O.
,
2009
, “
Ontology-Driven Integration of CAD/CAE Applications: Strategies and Comparisons
,”
ASME
Paper No. DETC2009-87768, pp.
1461
1472
.
58.
Zhan
,
P.
,
Jayaram
,
U.
,
Kim
,
O.
, and
Zhu
,
L.
,
2010
, “
Knowledge Representation and Ontology Mapping Methods for Product Data in Engineering Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
2
), p.
021004
.
59.
Ciocoiu
,
M.
,
Nau
,
D. S.
, and
Gruninger
,
M.
,
2001
, “
Ontologies for Integrating Engineering Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
1
), pp.
12
22
.
60.
Horrocks
,
I.
,
Sattler
,
U.
, and
Tobies
,
S.
,
1999
, “
Practical Reasoning for Expressive Description Logics
,”
Logic for Programming and Automated Reasoning
,
Springer
,
Berlin, Germany
, pp.
161
180
.
61.
Horrocks
,
I.
,
Patel-Schneider
,
P. F.
,
Boley
,
H.
,
Tabet
,
S.
,
Grosof
,
B.
, and
Dean
,
M.
,
2004
, “
SWRL: A Semantic Web Rule Language Combining OWL and RuleML
,” last accessed Jan. 18, 2016, http://www.w3.org/Submission/SWRL/
62.
Pilehvar
,
M. T.
, and
Navigli
,
R.
,
2015
, “
From Senses to Texts: An All-in-One Graph-Based Approach for Measuring Semantic Similarity
,”
Artif. Intell.
,
228
(
11
), pp.
95
128
.
63.
Horrocks
,
I.
,
Patel-Schneider
,
P. F.
, and
Van Harmelen
,
F.
,
2003
, “
From SHIQ and RDF to OWL: The Making of a Web Ontology Language
,”
J. Web Semantics
,
1
(
1
), pp.
7
26
.
64.
Uschold
,
M.
, and
Gruninger
,
M.
,
1996
, “
Ontologies: Principles, Methods and Applications
,”
Knowl. Eng. Rev.
,
11
(
2
), pp.
93
136
.
65.
Fernández-López
,
M.
,
Gómez-Pérez
,
A.
, and
Juristo
,
N.
,
1997
, “
Methontology: From Ontological Art Towards Ontological Engineering
,”
Ontological Engineering AAAI-97 Spring Symposium Series
, Stanford University, Stanford, CA, pp.
33
40
.
66.
Swartout
,
B.
,
Patil
,
R.
,
Knight
,
K.
, and
Russ
,
T.
,
1996
, “
Toward Distributed Use of Large-Scale Ontologies
,”
10th Workshop Knowledge Acquisition Knowledge-Based Systems, AAAI Spring Symposium on Ontological Engineering
, pp.
138
148
.
67.
Noy
,
N. F.
, and
McGuinness
,
D. L.
,
2001
, “
Ontology Development 101: A Guide to Creating Your First Ontology
,” Stanford Knowledge Systems Laboratory, Stanford University, Stanford, CA, Technical Report No. KSL-01-05.
68.
Ahmed
,
S.
,
Sanghee
,
K.
, and
Wallace
,
K. M.
,
2007
, “
A Methodology for Creating Ontologies for Engineering Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
2
), pp.
132
140
.
69.
Ameri
,
F.
,
Kulvatunyou
,
B.
,
Ivezic
,
N.
, and
Kaikhah
,
K.
,
2014
, “
Ontological Conceptualization Based on the SKOS
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
031006
.
70.
Fiorentini
,
X.
,
Gambino
,
I.
,
Liang
,
V. C.
,
Foufou
,
S.
,
Rachuri
,
R.
,
Mani
,
M.
, and
Bock
,
C.
,
2007
, “
An Ontology for Assembly Representation
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.
71.
Lin
,
J.
,
Fox
,
M. S.
, and
Bilgic
,
T.
,
1996
, “
A Requirement Ontology for Engineering Design
,”
Concurrent Eng.: Res. Appl.
,
4
(
3
), pp.
279
291
.
72.
Yang
,
S. C.
,
Patil
,
L.
, and
Dutta
,
D.
,
2010
, “
Function Semantic Representation (FSR): A Rule-Based Ontology for Product Functions
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031001
.
73.
Abdul-Ghafour
,
S.
,
Ghodous
,
P.
, and
Shariat
,
B.
,
2012
, “
Integration of Product Models by Ontology Development
,”
2012 IEEE 13th International Conference on Information Reuse and Integration
, IRI,
IEEE
,
New York
, pp.
548
555
.
74.
Lu
,
W.
,
Qin
,
Y.
,
Liu
,
X.
,
Huang
,
M.
,
Zhou
,
L.
, and
Jiang
,
X.
,
2015
, “
Enriching the Semantics of Variational Geometric Constraint Data With Ontology
,”
Comput.-Aided Des.
,
63
(
6
), pp.
72
85
.
75.
Zhong
,
Y.
,
Huang
,
M.
, and
Qin
,
Y.
,
2013
,
Knowledge Representation of Geometrical Product Specifications and Verification
,
Xidian University Press
,
Xi’an, China
.
76.
Zhong
,
Y.
,
Qin
,
Y.
,
Huang
,
M.
,
Lu
,
W.
,
Gao
,
W.
, and
Du
,
Y.
,
2013
, “
Automatically Generating Assembly Tolerance Types With an Ontology-Based Approach
,”
Comput.-Aided Des.
,
45
(
11
), pp.
1253
1275
.
77.
Zhong
,
Y.
,
Qin
,
Y.
,
Huang
,
M.
,
Lu
,
W.
, and
Chang
,
L.
,
2014
, “
Constructing a Meta-Model for Assembly Tolerance Types With a Description Logic Based Approach
,”
Comput.-Aided Des.
,
48
(
3
), pp.
1
16
.
78.
Qin
,
Y.
,
Lu
,
W.
,
Liu
,
X.
,
Huang
,
M.
,
Zhou
,
L.
, and
Jiang
,
X.
,
2015
, “
Description Logic-Based Automatic Generation of Geometric Tolerance Zones
,”
Int. J. Adv. Manuf. Technol.
,
79
(
5
), pp.
1221
1237
.
79.
Zhao
,
W.
, and
Liu
,
J.
,
2008
, “
OWL/SWRL Representation Methodology for EXPRESS-Driven Product Information Model: Part I. Implementation Methodology
,”
Comput. Ind.
,
59
(
6
), pp.
580
589
.
80.
Matsokis
,
A.
, and
Kiritsis
,
D.
,
2010
, “
An Ontology-Based Approach for Product Lifecycle Management
,”
Comput. Ind.
,
61
(
8
), pp.
787
797
.
81.
Vegetti
,
M.
,
Leone
,
H.
, and
Henning
,
G.
,
2011
, “
PRONTO: An Ontology for Comprehensive and Consistent Representation of Product Information
,”
Eng. Appl. Artif. Intell.
,
24
(
8
), pp.
1305
1327
.
82.
Euzenat
,
J.
, and
Shvaiko
,
P.
,
2013
,
Ontology Matching
, 2nd ed.,
Springer
,
Berlin, Germany
.
83.
Lu
,
W.
,
Qin
,
Y.
,
Qi
,
Q.
,
Zeng
,
W.
,
Zhong
,
Y.
,
Liu
,
X.
, and
Jiang
,
X.
,
2016
, “
Selecting a Semantic Similarity Measure for Concepts in Two Different CAD Model Data Ontologies
,”
Adv. Eng. Inf.
,
30
(
3
), pp.
449
466
.
84.
Zolin
,
E.
,
2013
, “
Complexity of Reasoning in Description Logics
,” last accessed Jan. 18, 2016, http://www.cs.man.ac.uk/∼ezolin/dl/
85.
Ortiz
,
M.
,
Rudolph
,
S.
, and
Simkus
,
M.
,
2010
, “
Worst-Case Optimal Reasoning for the Horn-DL Fragments of OWL 1 and 2
,”
12th International Conference on Principles of Knowledge Representation and Reasoning
, AAAI Press, Palo Alto, CA, pp.
269
279
.
86.
Lipman
,
R.
, and
Lubell
,
J.
,
2015
, “
Conformance Checking of PMI Representation in CAD Model STEP Data Exchange Files
,”
Comput.-Aided Des.
,
66
(
9
), pp.
14
23
.
87.
W3C OWL Working Group
,
2012
, “
OWL 2 Web Ontology Language Document Overview (Second Edition)
,” last accessed Jan. 18, 2016, http://www.w3.org/TR/owl2-overview/
88.
Horrocks
,
I.
,
Kutz
,
O.
, and
Sattler
,
U.
,
2006
, “
The Even More Irresistible SROIQ
,”
10th International Conference on Principles of Knowledge Representation and Reasoning
, AAAI Press, Palo Alto, CA, pp.
57
67
.
89.
Goel
,
A. K.
,
Vattam
,
S.
,
Wiltgen
,
B.
, and
Helms
,
M.
,
2012
, “
Cognitive, Collaborative, Conceptual and Creative—Four Characteristics of the Next Generation of Knowledge-Based CAD Systems: A Study in Biologically Inspired Design
,”
Comput.-Aided Des.
,
44
(
10
), pp.
879
900
.
90.
Chandrasegaran
,
S. K.
,
Ramani
,
K.
,
Sriram
,
R. D.
,
Horváth
,
I.
,
Bernard
,
A.
,
Harik
,
R. F.
, and
Gao
,
W.
,
2013
, “
The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems
,”
Comput.-Aided Des.
,
45
(
2
), pp.
204
228
.
91.
Feeney
,
A. B.
,
Frechette
,
S. P.
, and
Srinivasan
,
V.
,
2015
, “
A Portrait of an ISO STEP Tolerancing Standard as an Enabler of Smart Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021001
.
You do not currently have access to this content.