The development of surface modification technique has been the subject of the studies regarding the fatigue performance and biological characterization of the modified layers. In the present research work, powder mixed electric discharge machining (PMEDM) a novel nonconventional machining technique has been proposed for surface modification of β-Ti implant for orthopedics application. The surface topography and morphology like roughness, surface cracks, and recast layer thickness of each of the machined specimens were investigated using Mitutoyo surface roughness tester and field-emission scanning electron microscopy (FE-SEM), respectively. This study aims to investigate the effect of surface characteristics of PMEDM process on the fatigue performance and bioactivity of β-Ti implants and moreover a comparative analysis is made on the fatigue performance and biological activity of specimens machined with presently used machining methods like electric discharge machining (EDM) and mechanical polishing. The high cycle fatigue (HCF) performance of polished specimens was superior and had no adverse effect of microstructure on fatigue endurance. As expected, the fatigue behavior of β-Ti implant-based alloy, after undergoing EDM treatment, is poorly observed due to the microrough surface. The fatigue performance is dependent on microstructure and surface roughness of the specimens. Subsequent PMEDM process significantly improves the fatigue endurance of β-Ti implant-based alloy specimens. PMEDMed surface with micro-, sub-micro-, and nano-structured topography exhibited excellent bioactivity and improved biocompatibility. PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the polished and EDMed substrate. Furthermore, the differentiation results indicated that a combination of nanoscale featured submicrorough PMEDMed surface promotes various osteoblast differentiation activities like alkaline phosphatase (ALP) activity, osteocalcin production, the local factor osteoprotegerin, which inhibits osteoclastogenesis.

References

References
1.
Geetha
,
M.
,
Singh
,
A. K.
,
Asokamani
,
R.
, and
Gogia
,
A. K.
,
2009
, “
Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants-A Review
,”
Prog. Mater. Sci.
,
54
(
3
), pp.
397
425
.
2.
Niinomi
,
M.
,
2009
, “
Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods
,”
Sci. Technol. Adv. Mater.
,
4
(
5
), pp.
445
454
.
3.
Niinomi
,
M.
,
1998
, “
Mechanical Properties of Biomedical Titanium Alloy
,”
Mater. Sci. Eng.: A
,
243
(
1–2
), pp.
231
236
.
4.
Niinomi
,
M.
,
Nakai
,
M.
, and
Hieda
,
J.
,
2012
, “
Development of New Metallic Alloys for Biomedical Applications
,”
Acta Biomater.
,
8
(
11
), pp.
3888
3903
.
5.
Liu
,
X. B.
,
Meng
,
X. J.
,
Liu
,
H. Q.
,
Shi
,
G. L.
,
Wu
,
S. H.
,
Sun
,
C. F.
,
Wang
,
M. D.
, and
Qi
,
L. H.
,
2014
, “
Development and Characterization of Laser Clad High Temperature Self-Lubricating Wear Resistant Composite Coatings on Ti–6Al–4V Alloy
,”
Mater. Des.
,
55
, pp.
404
409
.
6.
Minagar
,
S.
,
Berndt
,
C. C.
,
Wang
,
J.
,
Ivanova
,
E.
, and
Wen
,
C.
,
2012
, “
A Review of the Application of Anodization for the Fabrication of Nanotubes on Metal Implant Surfaces
,”
Acta Biomater.
,
8
(
8
), pp.
2875
2888
.
7.
Bartolo
,
P.
,
Kruth
,
J. P.
,
Silva
,
J.
,
Levy
,
G.
,
Malshe
,
A.
,
Rajurkar
,
K.
,
Mitsuishi
,
M.
,
Ciurana
,
J.
, and
Leu
,
M.
,
2012
, “
Biomedical Production of Implants by Additive Electro-Chemical and Physical Processes
,”
CIRP Ann.-Manuf. Technol.
,
61
(
2
), pp.
635
655
.
8.
Liua
,
X.
,
Chu
,
P. K.
, and
Ding
,
C.
,
2004
, “
Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications
,”
Mater. Sci. Eng.: R
,
47
(
3–4
), pp.
49
121
.
9.
Vladescu
,
A.
,
Braic
,
V.
,
Balaceanu
,
M.
,
Braic
,
M.
,
Parau
,
A. C.
,
Ivanescu
,
S.
, and
Fanara
,
C.
,
2013
, “
Characterization of the Ti–10Nb–10Zr–5Ta Alloy for Biomedical Applications—Part 1: Microstructure Mechanical Properties, and Corrosion Resistance
,”
J. Mater. Eng. Perform.
,
22
(
8
), pp.
2389
2397
.
10.
Prakash
,
C.
,
Kansal
,
H. K.
,
Pabla
,
B. S.
,
Puri
,
S.
, and
Aggarwal
,
A.
,
2016
, “
Electric Discharge Machining—A Potential Choice for Surface Modification of Metallic Implants for Orthopedics Applications: A Review
,”
Proc. Inst. Mech. Eng., Part B
,
230
(
2
) pp.
231
253
.
11.
Peng
,
P. W.
,
Ou
,
K. L.
,
Lin
,
H. C.
,
Pan
,
Y. N.
, and
Wang
,
C. H.
,
2010
, “
Effect of Electrical-Discharging on Formation of Nanoporous Biocompatible Layer on Titanium
,”
J. Alloys Compd.
,
492
(
1–2
), pp.
625
630
.
12.
Yang
,
T. S.
,
Huang
,
M. S.
,
Wang
,
M. S.
,
Lin
,
M. H.
,
Tsai
,
M. Y.
, and
Wang
,
P. Y.
,
2013
, “
Effect of Electrical Discharging on Formation of Nanoporous Biocompatible Layer on Ti–6Al–4V Alloys
,”
Implant Dent.
,
22
(
4
), pp.
374
379
.
13.
Lee
,
W. F.
,
Yang
,
T. S.
,
Wu
,
Y. C.
, and
Peng
,
P. W.
,
2013
, “
Nanoporous Biocompatible Layer on Ti-6Al-4V Alloys Enhanced Osteoblast-Like Cell Response
,”
J. Exp. Clin. Med.
,
5
(
3
), pp.
92
96
.
14.
Bin
,
T. C.
,
Xin
,
L. D.
, and
Zhan
,
W.
,
2011
, “
Electro-Spark Alloying Using Graphite Electrode on Titanium Alloy Surface for Biomedical Applications
,”
Appl. Surf. Sci.
,
257
(
15
), pp.
6364
6371
.
15.
Harcuba
,
P.
,
Bacakova
,
L.
,
Strasky
,
J.
,
Bačáková
,
M.
,
Novotná
,
K.
, and
Janeček
,
M.
,
2012
, “
Surface Treatment by Electric Discharge Machining of Ti–6Al–4V Alloy for Potential Application in Orthopaedics
,”
J. Mech. Behav. Biomed. Mater.
,
7
, pp.
96
105
.
16.
Strasky
,
J.
,
Janecek
,
M.
,
Harcuba
,
P.
,
Bukovina
,
M.
, and
Wagner
,
L.
,
2011
, “
The Effect of Microstructure on Fatigue Performance of Ti-6Al-4V Alloy After EDM Surface Treatment for Application in Orthopaedics
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1955
1962
.
17.
Strasky
,
J.
,
Havlikova
,
J.
,
Bacakova
,
L.
,
Harcuba
,
P.
,
Mhaede
,
M.
, and
Janecek
,
M.
,
2013
, “
Characterization of Electric Discharge Machining, Subsequent Etching and Shot-Peening as a Surface Treatment for Orthopedic Implants
,”
Appl. Surf. Sci.
,
281
, pp.
73
78
.
18.
Havlikova
,
J.
,
Strasky
,
J.
,
Vandrovcova
,
M.
,
Harcuba
,
P.
,
Mhaede
,
M.
,
Janecek
,
M.
, and
Bacakova
,
L.
,
2014
, “
Innovative Surface Modification of Ti–6Al–4V Alloy With a Positive Effect on Osteoblast Proliferation and Fatigue Performance
,”
Mater. Sci. Eng.: C
,
39
(
1
), pp.
371
379
.
19.
Janecek
,
M.
,
Novy
,
F.
,
Strasky
,
J.
,
Harcuba
,
P.
, and
Wagner
,
L.
,
2011
, “
Fatigue Endurance of Ti– 6Al–4V Alloy With Electro-Eroded Surface for Improved Bone In-Growth
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
3
), pp.
417
422
.
20.
Guu
,
Y. H.
, and
Hosheng
,
H.
,
2001
, “
High Cycle Fatigue of Electrical-Discharge Machined AISI D2 Tool Steel
,”
Int. J. Mater. Prod. Technol.
,
16
(
6/7
), pp.
642
657
.
21.
Guu
,
Y. H.
, and
Hosheng
,
H.
,
2001
, “
Improvement of Fatigue Life of Electrical Discharge Machined AISI D2 Tool Steel by TiN Coating
,”
Mater. Sci. Eng.: A
,
318
(
1–2
), pp.
155
162
.
22.
Tai
,
T. Y.
, and
Lu
,
S. J.
,
2009
, “
Improving the Fatigue Life of Electro-Discharge-Machined SDK11 Tool Steel Via the Suppression of Surface Cracks
,”
Int. J. Fatigue
,
31
(
3
), pp.
433
438
.
23.
Prakash
,
C.
,
Kansal
,
H. K.
,
Pabla
,
B. S.
, and
Puri
,
S.
,
2016
, “
Experimental Investigations in Powder Mixed Electric Discharge Machining of Ti-35Nb-7Ta-5Zr β-Titanium Alloy
,”
Mater. Manuf. Processes
(in press).
24.
Muthuramalingam
,
T.
, and
Mohan
,
B.
,
2013
, “
Influence of Discharge Current Pulse on Machinability in Electrical Discharge Machining
,”
Mater. Manuf. Processes
,
28
(
4
), pp.
375
380
.
25.
Yadav
,
U. S.
, and
Yadava
,
V.
,
2015
, “
Experimental Modelling and Optimisation of Process Parameters of Hole Drilling by Electrical Discharge Machining of Aerospace Titanium Alloy
,”
Int. J. Manuf. Technol. Manage.
,
29
(
3–4
), pp.
211
234
.
26.
Mover
,
T. M.
,
2014
, “
Degradation of Titanium 6Al–4V Fatigue Strength Due to Electrical Discharge Machining
,”
Int. J. Fatigue
,
64
, pp.
84
96
.
27.
Ntasi
,
A.
,
Mueller
,
W. D.
,
Eliades
,
G.
, and
Zinelis
,
S.
,
2010
, “
The Effect of Electro Discharge Machining (EDM) on the Corrosion Resistance of Dental Alloys
,”
Dent. Mater.
,
26
(
12
), pp.
237
245
.
28.
Shabgard
,
M. R.
, and
Alenabi
,
H.
,
2015
, “
Ultrasonic Assisted Electrical Discharge Machining of Ti-6Al-4V Alloy
,”
Mater. Manuf. Processes
,
30
(
8
), pp.
991
1000
.
29.
Pirani
,
C.
,
Iacono
,
F.
,
Generali
,
L.
,
Sassatelli
,
P.
,
Nucci
,
C.
,
Lusvarghi
,
L.
,
Gandolfi
,
M. G.
, and
Prati
,
C.
,
2016
, “
HyFlex EDM: Superficial Features, Metallurgical Analysis and Fatigue Resistance of Innovative Electro Discharge Machined NiTi Rotary Instruments
,”
Int. Endod. J.
,
49
(
5
) pp.
483
493
.
30.
Dhakar
,
K.
, and
Dvivedi
,
A.
,
2015
, “
Parametric Evaluation on Near-Dry Electric Discharge Machining
,”
Mater. Manuf. Processes
,
31
(
4
), pp.
413
421
.
31.
Krishna
,
M. E.
, and
Patowari
,
P. K.
,
2014
, “
Parametric Study of Electric Discharge Coating Using Powder Metallurgical Green Compact Electrodes
,”
Mater. Manuf. Processes
,
29
(
9
), pp.
1131
1138
.
32.
Jothimurugan
,
R.
, and
Amirthagadeswaran
,
K. S.
,
2016
, “
Performance of Additive Mixed Kerosene–Servotherm in Electrical Discharge Machining of Monel 400™
,”
Mater. Manuf. Processes
,
31
(
4
), pp.
432
438
.
33.
Kansal
,
H. K.
,
Singh
,
S.
, and
Kumar
,
P.
,
2005
, “
Application of Taguchi Method for Optimization of Powder Mixed Electrical Discharge Machining
,”
Int. J. Manuf. Technol. Manage.
,
7
(
2–4
), pp.
329
341
.
34.
Kansal
,
H. K.
,
Singh
,
S.
, and
Kumar
,
P.
,
2007
, “
Effect of Silicon Powder Mixed EDM on Machining Rate of AISI D2 Die Steel
,”
J. Manuf. Processes
,
9
(
1
), pp.
13
22
.
35.
Singh
,
A. K.
,
Kumar
,
S.
, and
Singh
,
V. P.
,
2014
, “
Optimization of Parameters Using Conductive Powder in Dielectric for EDM of Super Co 605 With Multiple Quality Characteristics
,”
Mater. Manuf. Processes
,
29
(
3
), pp.
267
273
.
36.
Kuriachen
,
B.
, and
Mathew
,
J.
,
2015
, “
Effect of Powder Mixed Dielectric on Material Removal and Surface Modification in Micro Electric Discharge Machining of Ti-6Al-4V
,”
Mater. Manuf. Processes
,
31
(
4
), pp.
439
446
.
37.
Sidhu
,
S. S.
,
Batish
,
A.
, and
Kumar
,
S.
,
2014
, “
Study of Surface Properties in Particulate-Reinforced Metal Matrix Composites (MMCs) Using Powder-Mixed Electrical Discharge Machining (EDM)
,”
Mater. Manuf. Processes
,
29
(
1
), pp.
46
52
.
38.
Singh
,
B.
,
Kumar
,
J.
, and
Kumar
,
S.
,
2014
, “
Experimental Investigation on Surface Characteristics in Powder-Mixed Electro Discharge Machining of AA6061/10%SiC Composite
,”
Mater. Manuf. Processes
,
29
(
3
), pp.
287
297
.
39.
Singh
,
B.
,
Kumar
,
J.
, and
Kumar
,
S.
,
2014
, “
Influences of Process Parameters on MRR Improvement in Simple and Powder-Mixed EDM of AA6061/10%SiC Composite
,”
Mater. Manuf. Processes
,
30
(
1
), pp.
303
312
.
40.
Kansal
,
H. K.
,
Singh
,
S.
, and
Kumar
,
P.
,
2007
, “
Technology and Research Developments in Powder Mixed Electric Discharge Machining (PMEDM)
,”
J. Mater. Process. Technol.
,
184
(
1–3
), pp.
32
41
.
41.
Kumar
,
H.
, and
Davim
,
J. P.
,
2010
, “
Role of Powder in the Machining of Al-10%Sicp Metal Matrix Composites by Powder Mixed Electric Discharge Machining
,”
J. Compos. Mater.
,
45
(
2
), pp.
133
151
.
42.
Wong
,
Y. S.
,
Lim
,
L. C.
,
Rahuman
,
I.
, and
Tee
,
W. M.
,
1998
, “
Near-Mirror Finishing Phenomenon in EDM Using Powder Mixed Dielectric
,”
J. Mater. Process. Technol.
,
79
(
1–3
), pp.
30
40
.
43.
Pecas
,
P.
, and
Henriques
,
E.
,
2008
, “
Effect of the Powder Concentration and Dielectric Flow in the Surface Morphology in Electrical Discharge Machining With Powder-Mixed Dielectric (PMD-EDM)
,”
Int. J. Adv. Manuf. Technol.
,
37
(
11
), pp.
1120
1132
.
44.
Prabhu
,
S.
, and
Vinayagam
,
B. K.
,
2008
, “
A Study on Nano-Surface Generation in Electric Discharge Machining Process Using Multi-Wall Carbon Nanotubes
,”
Int. J. Nanopart.
,
1
(
4
), pp.
310
318
.
45.
Kumar
,
H.
,
2014
, “
Development of Mirror Like Surface Characteristics Using Nano Powder Mixed Electric Discharge Machining (NPMEDM)
,”
Int. J. Adv. Manuf. Technol.
,
76
(
1–4
), pp.
105
113
.
46.
Prakash
,
C.
,
Kansal
,
H. K.
,
Pabla
,
B. S.
, and
Puri
,
S.
,
2014
, “
Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining
,”
J. Mater. Eng. Perform.
,
24
(
9
), pp.
3622
3633
.
47.
Ekmekci
,
N.
, and
Ekmekci
,
B.
,
2015
, “
Electrical Discharge Machining of Ti6Al4V in Hydroxyapatite Powder Mixed Dielectric Liquid
,”
Mater. Manuf. Processes
, (in press).
48.
Prakash
,
C.
,
Kansal
,
H. K.
,
Pabla
,
B. S.
, and
Puri
,
S.
,
2015
, “
Potential of Powder Mixed Electric Discharge Machining to Enhance the Wear and Tribological Performance of β-Ti Implant for Orthopedic Applications
,”
J. Nanoeng. Nanomanuf.
,
5
(
4
), pp.
261
269
.
49.
Prakash
,
C.
,
Kansal
,
H. K.
,
Pabla
,
B. S.
, and
Puri
,
S.
,
2016
, “
Multi-Objective Optimization of Powder Mixed Electric Discharge Machining Parameters for Fabrication of Biocompatible Layer on β-Ti Alloy Using NSGA-II Coupled With Taguchi Based Response Surface Methodology
,”
J. Mech. Sci. Technol.
30
(
9
) (in press).
You do not currently have access to this content.