Among different brain–computer interfaces (BCIs), the steady-state visual evoked potential (SSVEP)-based BCI has been widely used because of its higher signal to noise ratio (SNR) and greater information transfer rate (ITR). In this paper, a method based on multiple signal classification (MUSIC) was proposed for multidimensional SSVEP signal processing. Both fundamental and second harmonics of SSVEPs were employed for the final target recognition. The experimental results proved it has the advantage of reducing recognition time. Also, the relation between the duty-cycle of the stimulus signals and the amplitude of the second harmonics of SSVEPs was discussed via experiments. In order to verify the feasibility of proposed methods, a two-layer spelling system was designed. Different subjects including those who have never used BCIs before used the system fluently in an unshielded environment.

References

References
1.
Wolpaw
,
J. R.
,
Birbaumer
,
N.
,
Heetderks
,
W. J.
,
McFarland
,
D. J.
,
Peckham
,
P. H.
,
Schalk
,
G.
,
Donchin
,
E.
,
Quatrano
,
L. A.
,
Robinson
,
C. J.
, and
Vaughan
,
T. M.
,
2000
, “
Brain-Computer Interface Technology: A Review of the First International Meeting
,”
IEEE Trans. Rehabil. Eng.
,
8
(
2
), pp.
164
173
.
2.
Mason
,
S. G.
, and
Birch
,
G. E.
,
2003
, “
A General Framework for Brain-Computer Interface Design
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
11
(
1
), pp.
70
85
.
3.
Pasqualotto
,
E.
,
Federici
,
S.
, and
Belardinelli
,
M. O.
,
2012
, “
Toward Functioning and Usable Brain-Computer Interfaces (BCIs): A Literature Review
,”
Disability Rehabil. Assistive Technol.
,
7
(
2
), pp.
89
103
.
4.
Regan
,
D.
,
1989
, “
Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine
,”
Trends in Neurosciences
,
12
(10), pp.
413
414
.
5.
Cheng
,
M.
, and
Gao
,
S. K.
,
1999
, “
An EEG-Based Cursor Control System
,” 1st Joint
IEEE Engineering in Medicine and Biology 21st Annual Conference and Annual Fall Meeting of the Biomedical Engineering Society
Conference,
1
, p.
669
.
6.
Deng
,
Z. D.
,
Li
,
X. Q.
,
Zheng
,
K. H.
, and
Yao
,
W. T.
,
2011
, “
A Humanoid Robot Control System With SSVEP-Based Asynchronous Brain-Computer Interface
,”
Jiqiren/Robot
,
33
(2), pp.
129
135
.
7.
Shyu
,
K.
,
Chiu
,
Y. J.
,
Lee
,
P. L.
,
Lee
,
M. H.
,
Sie
,
J. J.
,
Wu
,
C. H.
,
Wu
,
Y. T.
, and
Tung
,
P. C.
,
2013
, “
Total Design of an FPGA-Based Brain Computer Interface Control Hospital Bed Nursing System
,”
IEEE Trans. Ind. Electron.
,
60
(
7
), pp.
2731
2739
.
8.
Liu
,
Q.
,
Chen
,
K.
,
Ai
,
Q.
, and
Xie
,
S. Q.
,
2014
, “
Review: Recent Development of Signal Processing Algorithms for SSVEP-Based Brain Computer Interfaces
,”
J. Med. Biol. Eng.
,
34
(
4
), pp.
299
309
.
9.
Bian
,
Y.
,
Li
,
H. W.
,
Zhao
,
L.
,
Yang
,
G. H.
, and
Geng
,
L. Q.
,
2011
, “
Research on Steady State Visual Evoked Potentials Based on Wavelet Packet Technology for Brain-Computer Interface
,”
Proc. Eng.
,
15
, pp.
2629
2633
.
10.
Zhang
,
Z.
,
Li
,
X.
, and
Deng
,
Z.
,
2010
, “
A CWT-Based SSVEP Classification Method for Brain-Computer Interface System
,”
International Conference on Intelligent Control and Information Processing
, pp.
43
48
.
11.
Zhao
,
L.
,
Yuan
,
P. X.
,
Xiao
,
L. T.
,
Meng
,
Q. G.
,
Hu
,
D. F.
, and
Shen
,
H.
,
2010
, “
Research on SSVEP Feature Extraction Based on HHT
,”
7th International Conference on Fuzzy Systems and Knowledge Discovery
, Vol.
5
, pp.
2220
2223
.
12.
Lin
,
Z. L.
,
Zhang
,
C. S.
,
Wu
,
W.
, and
Gao
,
X. R.
,
2006
, “
Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs
,”
IEEE Trans. Biomed. Eng.
,
53
(12), pp.
2610
2614
.
13.
Zhang
,
Z. M.
, and
Deng
,
Z. D.
,
2012
, “
A Kernel Canonical Correlation Analysis Based Idle-State Detection Method for SSVEP-Based Brain-Computer Interfaces
,”
2nd International Conference on Material and Manufacturing Technology
, Vol.
341
, pp.
634
640
.
14.
Zhang
,
Y.
,
Zhou
,
G. X.
,
Zhao
,
Q. B.
,
Onishi
,
A.
,
Jin
,
J.
,
Wang
,
X. Y.
, and
Cichocki
,
A.
,
2011
, “
Multiway Canonical Correlation Analysis for Frequency Components Recognition in SSVEP-Based BCIs
,”
18th International Conference on Neural Information Processing
, pp.
287
295
.
15.
Pan
,
J.
,
Gao
,
X.
,
Duan
,
F.
,
Yan
,
Z.
, and
Gao
,
S.
,
2011
, “
Enhancing the Classification Accuracy of Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces Using Phase Constrained Canonical Correlation Analysis
,”
J. Neural Eng.
,
8
(3), p. 036027.
16.
Chen
,
K.
,
Liu
,
Q.
, and
Ai
,
Q. S.
,
2014
, “
Multi-Channel SSVEP Pattern Recognition Based on Music
,”
4th International Conference on Intelligent Structure and Vibration Control
, Vol.
539
, pp.
84
88
.
17.
Chen
,
K.
,
Liu
,
Q.
,
Ai
,
Q. S.
,
Zhou
,
Z. D.
,
Xie
,
S. Q.
, and
Meng
,
W.
,
2016
, “
A Music-Based Method for SSVEP Signal Processing
,”
Australas. Phys. Eng. Sci. Med.
,
39
(
1
), pp.
71
84
.
18.
Schmidt
,
R. O.
,
1986
, “
Multiple Emitter Location and Signal Parameter Estimation
,”
IEEE Trans. Antennas Propag.
,
34
(
3
), pp.
276
280
.
19.
Swami
,
A.
,
Mendel
,
J. M.
, and
Nikias
,
C. L.
,
1998
, “
Higher-Order Spectral Analysis Toolbox: for Use With MATLAB: User's Guide
,” Mathworks, Natick, MA.
20.
Wang
,
Y. L.
,
Chen
,
H.
,
Peng
,
Y. N.
, and
Wan
,
Q.
,
2004
,
Theories and Algorithms of Spatial Spectrum Estimation
,
Press of Tsinghua University
, Beijing, China.
21.
Volosyak
,
I.
,
2011
, “
SSVEP-Based Bremen-BCI Interface—Boosting Information Transfer Rates
,”
J. Neural Eng.
,
8
(3), p. 036020.
22.
Picton
,
T.
,
1990
, “
Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine
,”
J. Clin. Neurophysiol.
,
7
(
3
), pp.
450
451
.
23.
Fisher
,
R. S.
,
Harding
,
G.
,
Erba
,
G.
,
Barkley
,
G. L.
, and
Wilkins
,
A.
,
2005
, “
Photic- and Pattern- Induced Seizures: A Review for the Epilepsy Foundation of America Working Group
,”
Epilepsia
,
46
(
9
), pp.
1426
1441
.
24.
Garcia-Molina
,
G.
,
Zhu
,
D. H.
, and
Abtahi
,
S.
,
2010
, “
Phase Detection in a Visual-Evoked-Potential Based Brain Computer Interface
,”
18th European Signal Processing Conference
, pp.
949
953
.
This content is only available via PDF.
You do not currently have access to this content.