Feature-level sentiment analysis can retrieve the sentimental preferences for the features of products but cannot retrieve the causes of the preferences. Previous sentiment analysis methods used sentiment words to calculate the sentiment polarity for specific features but could not utilize neutral sentiment words, even when they constituted a large proportion of the sentiment words. Fault diagnosis can extract causes and determine the root cause by using factual information and the cause-effect relation, but is not used for sentiment data. For the retrieval of sentiment root causes, we propose a sentiment root cause analysis method for user preferences. We consider sentiment relations based on fuzzy formal concept analysis (FFCA) to extend hierarchical feature-level sentiment analysis. A hierarchical relation of neutral sentiment words and explicit causal relation based on causal conjunctions is utilized to retrieve the cross features of root causes. A sentiment root cause is determined from the extracted causes to explain the preference of a sentiment expression by using a fuzzy cognitive map with a relations method. We demonstrate a factual ontology and sentiment ontology based on a feature ontology for clothing products. We evaluated the proposed sentiment root cause analysis method and verified that it is improved as compared with term frequency-based methods and sentiment score analysis.

References

References
1.
Scherer
,
K. R.
,
1999
, “
Appraisal Theory
,”
Handbook of Cognition and Emotion
,
Wiley
,
Chichester, UK
, pp.
637
663
.
2.
Tuarob
,
S.
, and
Tucker
,
C.
,
2014
, “
Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale Social Media Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031003
.
3.
Rai
,
R.
,
2012
, “
Identifying Key Product Attributes and Their Importance Levels From Online Customer Reviews
,”
ASME
Paper No. DETC2012-70493.
4.
de Albornoz
,
J. C.
,
Plaza
,
L.
,
Gervás
,
P.
, and
Díaz
,
A.
,
2011
, “
A Joint Model of Feature Mining and Sentiment Analysis for Product Review Rating
,”
Advances in Information Retrieval
,
Springer
,
Berlin Heidelberg
, Germany, pp.
55
66
.
5.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2013
, “
Fad or Here to Stay: Predicting Product Market Adoption and Longevity Using Large Scale, Social Media Data
,”
ASME
Paper No. DETC2013-12661.
6.
Wei
,
W.
, and
Gulla
,
J. A.
,
2010
, “
Sentiment Learning on Product Reviews Via Sentiment Ontology Tree
,”
48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics
, Stroudsburg, PA, pp.
404
413
.
7.
Miller
,
G. A.
,
1995
, “
WordNet: A Lexical Database for English
,”
Commun. ACM
,
38
(
11
), pp.
39
41
.
8.
Zhou
,
F.
,
Jiao
,
R.
, and
Linsey
,
J. S.
,
2015
, “
Latent Customer Needs Elicitation by Use Case Analogical Reasoning From Sentiment Analysis of Online Product Reviews
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071401
.
9.
Gruber
,
T. R.
,
1993
, “
A Translation Approach to Portable Ontology Specifications
,”
Knowl. Acquis.
,
5
(
2
), pp.
199
220
.
10.
Maedche
,
A.
,
2002
,
Ontology Learning for the Sentiment Web
,
Springer Science & Business Media
,
Berlin, Germany
, pp.
72
79
.
11.
Poelmans
,
J.
,
Ignatov
,
D. I.
,
Kuznetsov
,
S. O.
, and
Dedeno
,
G.
,
2013
, “
Formal Concept Analysis in Knowledge Processing: A Survey on Applications
,”
Expert Syst. Appl.
,
40
(
16
), pp.
6538
6560
.
12.
Cimiano
,
P.
,
Hotho
,
A.
,
Stumme
,
G.
, and
Tane
,
J.
,
2004
, “
Conceptual Knowledge Processing With Formal Concept Analysis and Ontologies
,”
Concept Lattices
,
Springer
,
Berlin Heidelberg
, Germany, pp.
189
207
.
13.
Jiang
,
G.
,
Ogasawara
,
K.
,
Endoh
,
A.
, and
Sakurai
,
T.
,
2003
, “
Context-Based Ontology Building Support in Clinical Domains Using Formal Concept Analysis
,”
Int. J. Med. Inf.
,
71
(
1
), pp.
71
81
.
14.
Chen
,
R.-C.
,
Bau
,
C.-T.
, and
Yeh
,
C.-J.
,
2011
, “
Merging Domain Ontologies Based on the WordNet System and Fuzzy Formal Concept Analysis techniques
,”
Appl. Soft Comput.
,
11
(
2
), pp.
1908
1923
.
15.
Pedersen
,
T.
,
Patwardhan
,
S.
, and
Michelizzi
,
J.
,
2004
, “
WordNet: Similarity: Measuring the Relatedness of Concepts
,”
HLT-NAACL 2004
, Association for Computational Linguistics, Stroudsburg, PA, pp.
38
41
.
16.
Stumme
,
G.
, and
Maedche
,
A.
,
2001
, “
Formal Concept Lattice-Merge: Bottom-Up Merging of Ontologies
,”
IJCAI
,
1
, pp.
225
230
.
17.
Holzinger
,
W.
,
Krüpl
,
B.
, and
Herzog
,
M.
,
2006
,
Using Ontologies for Extracting Product Features From Web Pages
,
Springer
,
Berlin Heidelberg
, Germany.
18.
Lim
,
S. C. J.
,
Liu
,
Y.
, and
Loh
,
H. T.
,
2012
, “
An Exploratory Study of Ontology-Based Platform Analysis Under User Preference Uncertainty
,”
ASME
Paper No. DETC2012-70756.
19.
Liu
,
B.
, and
Zhang
,
L.
,
2012
, “
A Survey of Opinion Mining and Sentiment Analysis
,”
Mining Text Data
,
Springer
,
New York
, pp.
415
463
.
20.
Zhou
,
F.
,
Jiao
,
J. R.
,
Schaefer
,
D.
, and
Chen
,
S.
,
2010
, “
Hybrid Association Mining and Refinement for Affective Mapping in Emotional Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031010
.
21.
Geng
,
L.
, and
Hamilton
,
H. J.
,
2006
, “
Interestingness Measures for Data Mining: A Survey
,”
ACM Comput. Surv. (CSUR)
,
38
(
3
), p.
9
.
22.
Kim
,
S.
,
Bak
,
J.
, and
Oh
,
A.
,
2011
, “
Do You Feel What I Feel? Social Aspects of Emotions in Twitter Conversations
,”
Sixth International AAAI Conference on Weblogs and Social Media
, pp.
117
126
.
23.
Xu
,
Z.
,
Zhang
,
Y.
,
Wu
,
Y.
, and
Yang
,
Q.
,
2012
, “
Modeling User Posting Behavior on Social Media
,” 35th International ACM
SIGIR
Conference on Research and Development in Information Retrieval, ACM, New York, pp.
545
554
.
24.
Vo
,
A.-D.
, and
Ock
,
C.-Y.
,
2012
, “
Sentiment Classification: a Combination of PMI, sentiWordNet and Fuzzy Function
,”
Computational Collective Intelligence, Technologies and Applications
,
Springer
,
Berlin Heidelberg
, Germany, pp.
373
382
.
25.
Liu
,
B.
,
2010
, “
Sentiment Analysis and Subjectivity
,”
Handbook of Natural Language Processing 2
,
Chapman and Hall/CRC
,
Boca Raton, FL
, pp.
627
666
.
26.
Baccianella
,
S.
,
Esuli
,
A.
, and
Sebastiani
,
F.
,
2010
, “
SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining
,”
LREC
,
10
, pp.
2200
2204
.
27.
Hung
,
C.
, and
Lin
,
H.-K.
,
2013
, “
Using Objective Words in SentiWordNet to Improve Word-of-Mouth Sentiment Classification
,”
IEEE Intell. Syst.
,
28
(
2
), pp.
47
54
.
28.
Yi
,
R.
, and
Papalambros
,
P. Y.
,
2012
, “
On Design Preference Elicitation With Crowd Implicit Feedback
,”
ASME
Paper No. DETC2012-70605.
29.
Stone
,
T.
, and
Choi
,
S.-K.
,
2013
, “
Extracting Consumer Preference From User-Generated Content Sources Using Classification
,”
ASME
Paper No. DETC2013-13228.
30.
Afshari
,
H.
,
Peng
,
Q.
, and
Gu
,
P.
,
2016
, “
Design Optimization for Sustainable Products Under Users' Preference Changes
,”
ASME J. Comput. Inf. Sci. Eng.
, in press.
31.
Wang
,
L.
,
Youn
,
B. D.
,
Azarm
,
S.
, and
Kannan
,
P. K.
,
2011
, “
Customer-Driven Product Design Selection Using Web Based User-Generated Content
,”
ASME
Paper No. DETC2011-48338.
32.
Tucker
,
C. S.
, and
Kim
,
H. M.
,
2011
, “
Trend Mining for Predictive Product Design
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111008
.
33.
Marvasti
,
M. A.
,
Poghosyan
,
A. V.
,
Harutyunyan
,
S. N.
, and
Grigoryan
,
N. M.
,
2013
, “
An Anomaly Event Correlation Engine: Identifying Root Causes, Bottlenecks, and Black Swans in IT Environments
,”
VMware Tech. J.
,
2
(
1
), pp.
35
45
.
34.
Jabrouni
,
H.
,
Kamsu-Foguem
,
B.
,
Geneste
,
L.
, and
Vaysse
,
C.
,
2011
, “
Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback
,”
Eng. Appl. Artif. Intell.
,
24
(
8
), pp.
1419
1431
.
35.
Zhong
,
B.
, and
Li
,
Y.
,
2014
, “
An Ontological and Semantic Approach for the Construction Risk Inferring and Application
,”
J. Intell. Rob. Syst.
,
79
(
3–4
), pp.
449
463
.
36.
Lee
,
H.
, and
Kwon
,
S. J.
,
2014
, “
Ontological Semantic Inference Based on Cognitive Map
,”
Expert Syst. Appl
,
41
(
6
), pp.
2981
2988
.
37.
Kosko
,
B.
,
1986
, “
Fuzzy Cognitive Maps
,”
Int. J. Man-Mach. Stud.
,
24
(
1
), pp.
65
75
.
38.
Zhou
,
W.
,
Liu
,
Z.-T.
, and
Zhao
,
Y.
,
2007
, “
Ontology Learning by Clustering Based on Fuzzy Formal Concept Analysis
,”
31st Annual International IEEE Computer Software and Applications Conference
,
COMPSAC 2007
, Bejing, China, July 24–27, Vol.
1
, pp.
204
210
.
39.
Tho
,
Q. T.
,
Hui
,
S. C.
,
Fong
,
A. C. M.
, and
Cao
,
T. H.
,
2006
, “
Automatic Fuzzy Ontology Generation for Semantic Web
,”
IEEE Trans. Knowl. Data Eng.
,
18
(
6
), pp.
842
856
.
40.
Lau
,
R. Y.
,
Song
,
D.
,
Li
,
Y.
,
Cheung
,
T. C.
, and
Hao
,
J. X.
,
2009
, “
Toward a Fuzzy Domain Ontology Extraction Method for Adaptive e-Learning
,”
IEEE Trans. Knowl. Data Eng.
,
21
(
6
), pp.
800
813
.
41.
De Maio
,
C.
,
Fenza
,
G.
,
Loia
,
V.
, and
Senatore
,
S.
,
2012
, “
Hierarchical Web Resources Retrieval by Exploiting Fuzzy Formal Concept Analysis
,”
Inf. Process. Manage.
,
48
(
3
), pp.
399
418
.
42.
Cimiano
,
P.
,
Hotho
,
A.
, and
Staab
,
S.
,
2005
, “
Learning Concept Hierarchies From Text Corpora Using Formal Concept Analysis
,”
J. Artif. Intell. Res. (JAIR)
,
24
(1), pp.
305
339
.
43.
Wei
,
X.
,
Luo
,
X.
,
Li
,
Q.
,
Zhang
,
J.
, and
Xu
,
Z.
,
2015
, “
Online Comment-Based Hotel Quality Automatic Assessment Using Improved Fuzzy Comprehensive Evaluation and Fuzzy Cognitive Map
,”
IEEE Trans. Fuzzy Syst.
,
23
(
1
), pp.
72
84
.
44.
Du
,
Y.
,
Hai
,
Y.
,
Xie
,
C.
, and
Wang
,
X.
,
2014
, “
An Approach for Selecting Seed URLs of Focused Crawler Based on User-Interest Ontology
,”
Appl. Soft Comput.
,
14
, pp.
663
676
.
45.
Xu
,
Q.
,
Zhou
,
F.
, and
Jiao
,
J. R.
,
2011
, “
Affective-Cognitive Modeling for User Experience With Modular Colored Fuzzy Petri Nets
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
1
), p.
011004
.
46.
Meng
,
L.
,
Huang
,
R.
, and
Gu
,
J.
,
2013
, “
A Review of Semantic Similarity Measures in Wordnet
,”
Int. J. Hybrid Inf. Technol.
,
6
(
1
), pp.
1
12
.
47.
Wong
,
W.
,
Liu
,
W.
, and
Bennamoun
,
M.
,
2012
, “
Ontology Learning From Text: A Look Back and Into the Future
,”
ACM Comput. Surv. (CSUR)
,
44
(
4
), p.
20
.
48.
Kleinberg
,
J. M.
,
Kumar
,
R.
,
Raghavan
,
P.
,
Rajagopalan
,
S.
, and
Tomkins
,
A. S.
,
1999
, “
The Web as a Graph: Measurements, Models, and Methods
,”
Computing and Combinatorics
,
Springer
,
Berlin Heidelberg
, Germany, pp.
1
17
.
You do not currently have access to this content.