This paper outlines the development and implementation of large-scale discrete element method (DEM) simulations on graphics processing hardware. These simulations, as well as the topic of general-purpose graphics processing unit (GPGPU) computing, are introduced and discussed. We proceed to cover the general software design choices and architecture used to realize a GPGPU-enabled DEM simulation, driven primarily by the massively parallel nature of this computing technology. Further enhancements to this simulation, namely, a more advanced sliding friction model and a thermal conduction model, are then addressed. This discussion also highlights some of the finer points and issues associated with GPGPU computing, particularly surrounding the issues of parallelization, synchronization, and approximation. Qualitative comparison studies between simple and advanced sliding friction models demonstrate the effectiveness of the friction model. A test problem and an application problem in the area of wind turbine blade icing demonstrate the capabilities of the thermal model. We conclude with remarks regarding the simulations developed, future work needed, and the general suitability of GPGPU architectures for DEM computations.

References

References
1.
Williams
,
J.
,
Hocking
,
G.
, and
Mustoe
,
G.
,
1985
, “
The Theoretical Basis of the Discrete Element Method
,”
International Conference on Numerical Methods in Engineering: Theory and Applications
, pp.
897
906
.
2.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Géotechnique
,
29
(
1
), pp.
47
65
.
3.
Oñate
,
E.
, and
Owen
,
D. R. J.
,
2011
,
Particle-Based Methods: Fundamentals and Applications
(Computational Methods in Applied Sciences),
Springer
,
Dordrecht, The Netherlands
.
4.
Jing
,
L.
, and
Stephansson
,
O.
,
2007
,
Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications: Theory and Applications, Developments in Geotechnical Engineering
,
Elsevier Science
,
Amsterdam, The Netherlands
.
5.
Kruggel-Emden
,
H.
,
Simsek
,
E.
,
Rickelt
,
S.
,
Wirtz
,
S.
, and
Scherer
,
V.
,
2007
, “
Review and Extension of Normal Force Models for the Discrete Element Method
,”
Powder Technol.
,
171
(
3
), pp.
157
173
.
6.
Luding
,
S.
,
2008
, “
Cohesive, Frictional Powders: Contact Models for Tension
,”
Granular Matter
,
10
(
4
), pp.
235
246
.
7.
Kawaguchi
,
T.
,
Tanaka
,
T.
, and
Tsuji
,
Y.
,
1998
, “
Numerical Simulation of Two-Dimensional Fluidized Beds Using the Discrete Element Method (Comparison Between the Two- and Three-Dimensional Models)
,”
Powder Technol.
,
96
(
2
), pp.
129
138
.
8.
Bobert
,
A.
,
Fakhimi
,
A.
,
Johnson
,
S.
,
Morris
,
J.
,
Tonon
,
F.
, and
Yeung
,
M.
,
2009
, “
Numerical Models in Discontinuous Media: Review of Advances for Rock Mechanics Applications
,”
J. Geotech. Geoenviron. Eng.
,
135
(
11
), pp.
1547
1561
.
9.
Munjiza
,
A.
, and
Owen
,
D.
,
1995
, “
A Combined Finite-Discrete Element Method in Transient Dynamics of Fracturing Solids
,”
Eng. Comput.
,
12
(
2
), pp.
145
174
.
10.
Fang
,
Z. Q.
,
Hu
,
G. M.
,
Du
,
J.
,
Fan
,
Z.
, and
Liu
,
J.
,
2015
, “
A Contact Detection Algorithm for Multi-Sphere Particles by Means of Two-Level-Grid-Searching in DEM Simulations
,”
Int. J. Numer. Methods Eng.
,
102
(
13
), pp.
1869
1893
.
11.
Noborio
,
H.
,
Fukuda
,
S.
, and
Arimoto
,
S.
,
1988
, “
Fast Interference Check Method Using Octree Representation
,”
Adv. Rob.
,
3
(
3
), pp.
193
212
.
12.
Williams
,
J. R.
, and
Connor
,
R. O.
,
1999
, “
Discrete Element Simulation and the Contact Problem
,”
Arch. Comput. Methods Eng.
,
6
(
4
), pp.
279
304
.
13.
Navarro
,
C.
,
Hitschfeld-Kahler
,
N.
, and
Mateu
,
L.
,
2013
, “
A Survey on Parallel Computing and Its Applications in Data-Parallel Problems Using GPU Architectures
,”
Commun. Comput. Phys.
,
15
(
2
), pp.
285
329
.
14.
Sanders
,
J.
, and
Kandrot
,
E.
,
2011
,
CUDA by Example: An Introduction to General Purpose GPU Programming
,
Addison-Wesley
,
Boston, MA
.
15.
Courtier
,
R.
,
2013
,
Designing Scientific Applications on GPUs
,
CRC Press
,
Boca Raton, FL
.
16.
Kowalik
,
J.
, and
Puzniakowski
,
T.
,
2012
,
Using OPENCL: Programming Massively Parallel Computers
,
IOS Press B.V., Amsterdam, The Netherlands
.
17.
Karimi
,
K.
,
Dickson
,
N.
, and
Hamze
,
F.
,
2011
, “
A Performance Comparison of CUDA and OPENCL
.”
18.
Fang
,
J.
,
Varbanescu
,
A.
, and
Sips
,
H.
,
2011
, “
A Comprehensive Performance Comparison of CUDA and OPENCL
,”
2011 International Conference on Parallel Processing
,
Taipei City
,
Taiwan
, Sept. 13–16, pp.
216
225
.
19.
FrantzDale
,
B.
,
Plimpton
,
S.
, and
Shephard
,
M.
,
2010
, “
Software Components for Parallel Multiscale Simulation: An Example With Lammps
,”
Eng. Comput.
,
26
(
2
), pp.
205
211
.
20.
Gropp
,
W.
,
Lusk
,
E.
, and
Skjellum
,
A.
,
1999
,
Using MPI: Portable Parallel Programming With the Message-Passing Interface
,
2nd ed.
,
MIT Press
,
Cambridge, MA
.
21.
Chapman
,
B.
,
Jost
,
G.
, and
Pas
,
R.
,
2008
,
Using OpenMP: Portable Shared Memory Parallel Programming
, Vol.
10
,
MIT Press
,
Cambridge, MA
.
22.
Harada
,
T.
,
2008
, “
Real-Time Rigid Body Simulations on GPUs
,”
GPU Gems 3
,
Addison Wesley
,
Boston, MA
, Chap. 29.
23.
Harris
,
M.
,
2006
, “
Fast Fluid Dynamics Simulation on the GPU
,”
GPU Gems
,
Addison Wesley
,
Boston, MA
, pp.
637
665
.
24.
Chen
,
F.
,
Ge
,
W.
,
Xianfeng
,
L.
,
Li
,
B.
,
Li
,
J.
,
Li
,
X.
,
Wang
,
X.
, and
Yuan
,
X.
,
2009
, “
Multi-Scale HPC System for Multi-Scale Discrete Simulation—Development and Application of a Supercomputer With 1 Petaflops Peak Performance in Single Precision
,”
Particuology
,
7
(
4
), pp.
332
335
.
25.
Beberg
,
A.
,
Ensign
,
D.
,
Jayachandran
,
G.
,
Khaliq
,
S.
, and
Pande
,
V.
,
2009
, “
Folding@Home: Lessons From Eight Years of Volunteer Distributed Computing
,” 2009
IEEE
Symposium on Parallel and Distributed Processing
,
Rome
,
Italy
, May 23–29.
26.
Green
,
S.
,
2010
, “
Particle Simulation Using CUDA: Nvidia Software Development Toolkit
,” Nvidia, Santa Clara, CA.
27.
Ericson
,
C.
,
2004
,
Real-Time Collision Detection
(Morgan Kaufmann Series in Interactive 3D Technology), Vol.
1
,
Taylor & Francis
,
Abington, UK
.
28.
Kipfer
,
P.
,
Segal
,
M.
, and
Westermann
,
R.
,
2004
, “
UberFlow: A GPU-Based Particle Engine
,”
ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware
, HWWS'04, ACM, New York, pp.
115
122
.
29.
Terreros
,
I.
,
Iordanoff
,
I.
, and
Charles
,
J.
,
2013
, “
Simulation of Continuum Heat Conduction Using DEM Domains
,”
Comput. Mater. Sci.
,
69
(
1
), pp.
46
54
.
30.
Komatitsch
,
D.
,
Michéa
,
D.
, and
Erlebacher
,
G.
,
2009
, “
Porting a High-Order Finite-Element Earthquake Modeling Application to NVIDIA Graphics Cards Using CUDA
,”
J. Parallel Distrib. Comput.
,
69
(
5
), pp.
451
460
.
31.
Bédorf
,
J.
,
Gaburov
,
E.
, and
Zwart
,
S. P.
,
2012
, “
A Sparse Octree Gravitational N-Body Code That Runs Entirely on the GPU Processor
,”
J. Comput. Phys.
,
231
(
7
), pp.
2825
2839
.
32.
Shigeto
,
Y.
, and
Sakai
,
M.
,
2011
, “
Parallel Computing of Discrete Element Method on Multi-Core Processors
,”
Particuology
,
9
(
4
), pp.
398
405
.
You do not currently have access to this content.