The simulation of grasping operations in virtual reality (VR) is required for many applications, especially in the domain of industrial product design, but it is very difficult to achieve without any haptic feedback. Force feedback on the fingers can be provided by a hand exoskeleton, but such a device is very complex, invasive, and costly. In this paper, we present a new device, called HaptiHand, which provides position and force input as well as haptic output for four fingers in a noninvasive way, and is mounted on a standard force-feedback arm. The device incorporates four independent modules, one for each finger, inside an ergonomic shape, allowing the user to generate a wide range of virtual hand configurations to grasp naturally an object. It is also possible to reconfigure the virtual finger positions when holding an object. The paper explains how the device is used to control a virtual hand in order to perform dexterous grasping operations. The structure of the HaptiHand is described through the major technical solutions required and tests of key functions serve as validation process for some key requirements. Also, an effective grasping task illustrates some capabilities of the HaptiHand.

References

References
1.
Boothroyd
,
G.
, and
Alting
,
L.
,
1992
, “
Design for Assembly and Disassembly
,”
Ann. CIRP
,
41
(
2
), pp.
625
636
.
2.
Kyota
,
F.
, and
Saito
,
S.
,
2012
, “
Fast Grasp Synthesis for Various Shaped Objects
,”
Comput. Graphics Forum
,
31
(
2
), pp.
765
774
.
3.
Ciocarlie
,
M.
, and
Allen
,
P. K.
,
2009
, “
Hand Postures Subspaces for Dexterous Robotic Grasping
,”
Int. J. Rob. Res.
,
28
(
7
), pp.
851
867
.
4.
Jayaram
,
S.
,
Jayaram
,
U.
,
Kim
,
Y. J.
,
de Chenne
,
C.
,
Lyons
,
K. W.
,
Palmer
,
C.
, and
Mitsui
,
T.
,
2007
, “
Industry Case Studies in the Use of Immersive Virtual Assembly
,”
Virtual Reality J.
,
11
(
4
), pp.
217
228
.
5.
Perret
,
J.
,
Kneschke
,
C.
,
Vance
,
J. M.
, and
Dumont
,
G.
,
2013
, “
Interactive Assembly Simulation With Haptic Feedback
,”
Assembly Autom.
,
33
(
3
), pp. 214–220.
6.
Haption Website, last accessed Apr. 01,
2016
, http://www.haption.com
7.
Bowman
,
D. A.
,
Kruijff
,
E.
,
Laviola
,
J. J.
, and
Poupyrev
,
I.
,
2004
,
3D User Interfaces: Theory and Pratice
,
Addison Wesley-Pearson Education
, Boston, MA.
8.
Steinfeld
,
E.
,
1986
,
Hands-On Architecture: Executive Summary and Recommended Guidelines
,
Architectural and Transportation Barriers Compliance Board
,
Washington, D.C
.
9.
Massie
,
T. H.
, and
Salisbury
,
J. K.
,
1994
, “
The PHANTOM Haptic Interface: A Device for Probing Virtual Objects
,” ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Chicago, IL, Vol. 55, pp. 295–300.
10.
Kim
,
S.
,
Koike
,
Y.
, and
Sato
,
M.
,
2002
, “
Tension Based 7 DOFs Force Feedback Device: SPIDAR-G
,”
Trans. Control Autom. Syst. Eng.
,
4
(
1
), pp.
9
16
.
11.
Murayama
,
J.
,
Bougrila
,
L.
,
Luo
,
Y.
,
Akahane
,
K.
,
Hasegawa
,
S.
,
Hirsbrunner
,
B.
, and
Sato
,
M.
,
2004
, “
SPIDAR G&G, A Two-Handed Haptic Interface for Bimanual VR Interaction
,”
International Conference on EuroHaptics
, pp.
138
146
.
12.
Liu
,
L.
,
Miyake
,
S.
,
Maruyama
,
N.
,
Akahane
,
K.
, and
Sato
,
M.
,
2014
, “
Development of Two-Handed Multi-Finger Haptic Interface SPIDAR-10
,”
9th International Conference on EuroHaptics
, Versailles, France, June 24–26, pp.
176
183
.
13.
14.
Koyama
,
T.
,
Yamano
,
I.
,
Takemura
,
K.
, and
Maeno
,
T.
,
2002
, “
Multi-Fingered Exoskeleton Haptic Device Using Passive Force Feedback for Dexterous Teleoperation
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, pp.
2905
2910
.
15.
Burdea
,
G.
,
1996
,
Force and Touch Feedback for Virtual Reality
,
Wiley
,
New York
.
16.
17.
Endo
,
T.
,
Kawasaki
,
H.
,
Mouri
,
T.
,
Ishigure
,
Y.
,
Shimomura
,
H.
,
Matsumura
,
M.
, and
Koketsu
,
K.
,
2011
, “
Five-Fingered Haptic Interface Robot: HIRO III
,”
IEEE Trans. Haptics
,
4
(
1
), pp.
14
27
.
18.
López
,
J.
,
Breñosa
,
J.
,
Galiana
,
I.
,
Ferre
,
M.
,
Gimenez
,
A.
, and
Barrio
,
J.
,
2012
, “
Mechanical Design Optimization for Multi-Finger Haptic Devices Applied to Virtual Grasping Manipulation
,”
J. Mech. Eng.
,
58
(
7–8
), pp.
431
443
.
19.
Sone
,
J.
,
Yamada
,
K.
,
Kaneko
,
I.
,
Chen
,
J.
,
Kurosu
,
T.
,
Hasegawa
,
S.
, and
Sato
,
M.
,
2009
, “
Mechanical Design of Multi-Finger Haptic Display Allowing Changes in Contact Location
,”
8th International Conference on Virtual Reality Continuum and its Applications in Industry
(
VRCAI
), pp.
275
276
.
20.
Leuschke
,
R.
,
Kurihara
,
E. K. T.
,
Dosher
,
J.
, and
Hannaford
,
B.
,
2005
, “
High Fidelity Multi Finger Haptic Display
,”
First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
WHC
, Pisa, Italy, Mar. 18–20, pp.
606
608
.
21.
Chardonnet
,
J.-R.
, and
Léon
,
J.-C.
,
2010
, “
Design of an Immersive Peripheral for Object Grasping
,”
ASME
Paper No. DETC2010-28416.
22.
Harwin
,
W.
, and
Barrow
,
A.
,
2013
, “
Multi-Finger Grasps in a Dynamic Environment
,”
Multi-Finger Haptic Interaction
,
I.
Galiana
, and
M.
Ferre
, eds.,
Springer-Verlag
, London.
23.
Lin
,
M.
, and
Manosha
,
D.
,
2003
, “
Collision and Proximity Queries
,”
Handbook of Discrete and Computational Geometry
,
J. E.
Goodman
, and
J.
O’Rourke
, eds.,
CRC Press
, Boca Raton, FL, pp.
787
808
.
24.
Redon
,
S.
,
Kim
,
Y. J.
,
Lin
,
M. C.
, and
Manosha
,
D.
,
2005
, “
Fast Continuous Collision Detection for Articulated Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
2
), pp.
126
137
.
25.
Lin
,
M.
, and
Otaduy
,
M. A.
, eds.,
2008
,
Haptic Rendering
,
A K Peters
, Natik, MA.
26.
Zhai
,
S.
,
Milgram
,
P.
, and
Buxton
,
W.
,
1996
, “
The Influence of Muscle Groups on Performance of Multiple Degree-of-Freedom Input
,”
SIGCHI
Conference on Human Factors in Computing Systems
, pp.
308
315
.
27.
Lecuyer
,
A.
,
Coquillart
,
S.
,
Kheddar
,
A.
,
Richard
,
P.
, and
Coiffet
,
P.
,
2000
, “
Pseudo-Haptic Feedback: Can Isometric Input Devices Simulate Force Feedback?
,”
IEEE
Virtual Reality
, New Brunswick, NJ, pp.
83
90
.
28.
Pai
,
D. K.
,
Vanderloo
,
E. W.
,
Sadhukhan
,
S.
, and
Kry
,
P. G.
,
2005
, “
The Tango: A Tangible Tangoreceptive Whole-Hand Human Interface
,”
Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Mar. 18–20, pp.
141
147
.
29.
Kraeutner
,
S.
,
Gionfriddo
,
A.
,
Bardouille
,
T.
, and
Boe
,
S.
,
2014
, “
Motor Imagery-Based Brain Activity Parallels That of Motor Execution: Evidence From Magnetic Source Imaging of Cortial Oscillations
,”
J. Brain Res.
,
1588
, pp.
81
91
.
30.
31.
Kern
,
T. A.
,
2009
,
Engineering Haptic Devices
,
Springer
, Berlin, Heidelberg.
32.
Holz
,
D.
,
Ullrich
,
S.
,
Wolter
,
M.
, and
Kuhlen
,
T.
,
2008
, “
Multi-Contact Grasp Interaction for Virtual Environments
,”
J. Virtual Reality Broadcast.
,
5
(
7
), pp. 1860–2037.
You do not currently have access to this content.