Surgical training is an important and recent application where haptic interfaces are used to enhance the realism of virtual training simulators. Tissue cutting with surgical scissors is a common interaction mode in the simulations. The haptic interface needs to render a wide range of tissue properties and resistance forces accurately. In this research, we developed a hybrid haptic device made of a DC servomotor and a magnetorheological (MR) brake. The motor can provide fast dynamic response and compensate for inertia and friction effects of the device. But alone, it cannot supply high force levels and the sensation of stiff interaction with hard tissues such as tendons. On the other hand, the MR-brake can provide very stiff interaction forces yet cannot reflect fast dynamics that are encountered as the virtual scissors go through the tissue. The hybrid actuator developed in this work combines the two based on a control scheme that decomposes the actuator command signal into two branches considering each actuator's capabilities. It is implemented on a compact single degree-of-freedom (DOF) interface to simulate virtual tissue cutting with three different scissor types (Mayo, Metzenbaum, Iris) and four types of rat tissue (liver, muscle, skin, tendon). Results have shown close tracking of the desired force profile in all cases. Compared to just using a DC motor, the hybrid actuator provided a wider range of forces (up to 18 N) with fast response to render quick force variations without any instability for all simulated tissue and scissor types.

References

References
1.
Greenish
,
S.
,
1998
, “
Acquisition and Analysis of Cutting Forces of Surgical Instruments for Haptic Simulation
,”
M. Eng. thesis
,
Department of Electrical and Computer Engineering, McGill University
,
Montreal, Quebec, Canada
.
2.
Mahvash
,
M.
,
2010
, “
Mechanics of Dynamic Needle Insertion Into Biological Material
,”
IEEE Trans. Biomed. Eng.
,
57
(
4
), pp.
934
943
.
3.
Matsuoka
,
Y.
, and
Townsend
,
W. T.
,
2001
, “
Design of Life-Size Haptic Environments
,”
Experimental Robotics
, Vol.
VII
,
D.
Rus
, and
S.
Singh
, ed.,
Springer
,
Berlin, Heidelberg
.
4.
Conti
,
F.
, and
Khatib
,
O.
,
2009
, “
A New Actuation Approach for Haptic Interface Design
,”
Int. J. Rob. Res.
,
28
(
6
), pp.
834
848
.
5.
Letier
,
P.
,
Avraam
,
M.
,
Horodinca
,
M.
,
Schiele
,
A.
, and
Preumont
,
A.
,
2006
, “
Survey of Actuation Technologies for Body-Grounded Exoskeletons
,”
Eurohaptics
, Paris, pp.
497
500
.
6.
Nam
,
Y. J.
, and
Park
,
M. K.
,
2007
, “
A Hybrid Haptic Device for Wide-Ranged Force Reflection and Improved Transparency
,”
International Conference on Control, Automation and Systems
, Seoul, Oct. 17–20, pp.
1015
1020
.
7.
An
,
J.
, and
Kwon
,
D. S.
,
2002
, “
Haptic Experimentation on a Hybrid Active/Passive Force Feedback Device
,”
IEEE
International Conference on Robotics and Automation
, Washington, DC, pp.
4217
4222
.
8.
Kwon
,
T. B.
, and
Song
,
J. B.
,
2006
, “
Force Display Using a Hybrid Haptic Device Composed of Motors and Brakes
,”
Mechatronics
,
16
(
5
), pp.
249
257
.
9.
An
,
J.
, and
Kwon
,
D. S.
,
2009
, “
Five-Bar Linkage Haptic Device With DC Motors and MR Brakes
,”
J. Intell. Mater. Syst. Struct.
,
20
(1), pp.
97
107
.
10.
Sakaguchi
,
M.
, and
Furusho
,
J.
,
1998
, “
Force Display System Using Particle-Type Electrorheological Fluids
,”
International Conference on Robotics and Automation
,
Leuven
,
Belgium
, May 16–20, Vol.
3
, pp.
2586
2591
.
11.
Tondu
,
B.
, and
Lopex
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
,
20
(
2
), pp.
15
38
.
12.
Carbonell
,
P.
,
Jiang
,
Z. P.
, and
Repperger
,
D. W.
,
2001
, “
Nonlinear Control of a Pneumatic Muscle Actuator: Backstepping vs. Sliding-Mode
,”
IEEE
International Conference on Control Applications
,
México City
,
Mexico
, pp.
167
172
.
13.
Cai
,
D.
, and
Yamaura
,
H.
,
1997
, “
A VSS Control Method for a Manipulator Driven by an McKibben Artificial Muscle Actuator
,”
Electron. Commun. Jpn.
,
80
(
3
), pp.
55
63
.
14.
Guihard
,
M.
, and
Gorce
,
P.
,
1997
, “
Dynamic Control of an Artificial Muscle Arm
,”
IEEE
International Conference on Systems, Man and Cybernetics
, Le Touque Tokyo, Japan, Oct. 12–15, Vol.
4
, pp.
813
818
.
15.
Kimura
,
T.
,
Hara
,
S.
,
Fujita
,
T.
, and
Kagawa
,
T.
,
1995
, “
Control for Pneumatic Actuator Systems Using Feedback Linearization With Disturbance Rejection
,”
American Control Conference
, Seattle, WA, June 21–23, Vol.
1
, pp.
825
829
.
16.
Ahn
,
K. K.
,
Thanh
,
T. D. C.
, and
Ahn
,
Y. K.
,
2005
, “
Performance Improvement of Pneumatic Artificial Muscle Manipulators Using Magneto-Rheological Brake
,”
J. Mech. Sci. Technol.
,
19
(
3
), pp.
778
791
.
17.
Thanh
,
T. D. C.
, and
Ahn
,
K. K.
,
2005
, “
Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators With Magneto-Rheological Brake
,”
Mechatronics
,
16
(2), pp.
85
95
.
18.
Ahn
,
K. K.
, and
Nguyen
,
H. T. C.
,
2007
, “
Intelligent Switching Control of a Pneumatic Muscle Robot Arm Using Learning Vector Quantization Neural Network
,”
Mechatronics
,
17
, pp.
255
262
.
19.
Rezoug
,
A.
,
Boudoua
,
S.
, and
Hamerlain
,
F.
,
2009
, “
Fuzzy Logic Control for Manipulator Robot Actuated by Pneumatic Artificial Muscles
,” Third International Conference on Electrical Engineering-ICEE, Vol. 9, pp. 1–6.
20.
Phakamach
,
P.
,
2009
, “
Control of a DC Servomotor Using Fuzzy Logic Sliding Mode Model Following Controller
,” International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering,
3
(
12
), pp.
2325
2330
.
21.
Chen
,
J. Z.
, and
Liao
,
W. H.
,
2010
, “
Design, Testing and Control of a Magnetorheological Actuator for Assistive Knee Braces
,”
Smart Mater. Struct.
,
19
(2), p. 035029.
22.
Gonenc
,
B.
, and
Gurocak
,
H.
,
2012
, “
Virtual Needle Insertion With Haptic Feedback Using a Hybrid Actuator With DC Servomotor and MR-Brake With Hall-Effect Sensor
,”
Mechatronics
,
22
(
8
), pp.
1161
1176
.
23.
Gurocak
,
H.
,
Senkal
,
D.
, and
Gonenc
,
B.
,
2015
, “
Magnetorheological Devices and Associated Methods of Control
,”
U.S. Patent No. U.S. 9,093,214
.
24.
Senkal
,
D.
, and
Gurocak
,
H.
,
2011
, “
Haptic Joystick With Hybrid Actuator Using Air Muscles and Spherical MR-Brake
,”
Mechatronics
,
21
(
6
), pp.
951
960
.
25.
Rossa
,
C.
,
Lozada
,
J.
, and
Micaelli
,
A.
,
2013
, “
Stable Haptic Interface Using Passive and Active Actuators
,”
IEEE
International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
2386
2392
.
26.
Baser
,
O.
,
Gurocak
,
H.
, and
Konukseven
,
E. I.
,
2013
, “
Hybrid Control Algorithm to Improve Both Stable Impedance Range and Transparency in Haptic Devices
,”
Mechatronics
,
23
(
1
), pp.
121
134
.
27.
Gorman
,
P.
,
Krummel
,
T.
,
Webster
,
R.
,
Smith
,
M.
, and
Hutchens
,
D.
,
2000
,
A Prototype Haptic Lumbar Puncture Simulator
,”
Volume 70: Medicine Meets Virtual Reality 2000
, (Studies in Health Technology and Informatics), pp.
106
109
.
28.
“Immersion Corp.,” Last accessed Feb. 2016, http://www.immersion.com/
29.
Hirota
,
K.
,
Tanaka
,
A.
, and
Kaneko
,
T.
,
1999
, “
Representation of Force in Cutting Operation
,”
IEEE Virtual Reality
, p.
77
.
30.
Biesler
,
D.
, and
Gross
,
M. H.
,
2000
, “
Interactive Simulation of Surgical Cuts
,” Pacific Graphics 2000,
IEEE
Computer Society Press
,
Hong Kong
, pp.
116
125
.
31.
Chial
,
V. B.
,
Greenish
,
S.
, and
Okamura
,
A. M.
,
2002
, “
On the Display of Haptic Recordings for Cutting Biological Tissues
,”
IEEE
Virtual Reality Conference-10th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Orlando, FL, Mar. 24–25, pp.
80
87
.
32.
Okamura
,
A. M.
,
Webster
,
R. J.
,
Nolin
,
J. T.
,
Johnson
,
K. W.
, and
Jafry
,
H.
,
2003
, “
The Haptic Scissors: Cutting in Virtual Environments
,”
IEEE
International Conference on Robotics and Automation
, Baltimore, MD, Sept. 14–19, pp.
828
833
.
33.
Senkal
,
D.
, and
Gurocak
,
H.
,
2010
,
Serpentine Flux Path for High Torque MRF Brakes in Haptics Applications
,”
Mechatronics
,
20
(3), pp.
377
383
.
34.
“Lord Corp.,” Last accessed Feb. 2016, http://www.lord.com/
35.
“Infolytica Corp.,” Last accessed Feb. 2016, http://www.infolytica.com/
36.
Erol
,
O. G.
,
Gonenc
,
B.
,
Senkal
,
D.
,
Alkan
,
S.
, and
Gurocak
,
H.
,
2012
, “
Magnetic Induction Control With Embedded Sensor for Elimination of Hysteresis in Magnetorheological Brakes
,”
J. Intell. Mater. Syst. Struct.
,
23
(
4
), pp.
427
440
.
37.
“Quanser,” Last accessed Feb. 2016, http://www.quanser.com/
You do not currently have access to this content.