For the purposes of automating the assignment of tolerances during design, a math model, called the Tolerance-Map (T-Map), has been produced for most of the tolerance classes that are used by designers. Each T-Map is a hypothetical point-space that represents the geometric variations of a feature in its tolerance-zone. Of the six tolerance classes defined in the ASME/ANSI/ISO Standards, profile tolerances have received the least attention for representation in computer models. The objective of this paper is to provide a comprehensive treatment of T-Map construction for any line-profile by using primitive T-Map elements and their Boolean intersection. The method requires (a) decomposing a profile into segments, each of constant curvature; (b) creating a solid-model T-Map primitive for each in a common global reference frame; and (c) combining these by Boolean intersection to generate the T-Map for a complete line-profile of any shape. Freeform portions of a profile are modeled as a series of closely spaced points and subsequent formation of short circular arc-segments, each formed from the circle that osculates to three adjacent points.

References

References
1.
American National Standard
,
2009
, “
Dimensioning and Tolerancing
,” American Society of Mechanical Engineers, New York, Standard No. ASME Y14.5M.
2.
ISO
,
1983
, “
Geometric Tolerancing—Tolerancing of Form, Orientation, Location, and Run-Out—Generalities, Definitions, Symbols, and Indications on Drawings
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 1101.
3.
Mujezinović
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2004
, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
504
518
.
4.
Pasupathy
,
T. M. K.
,
Morse
,
E. P.
, and
Wilhelm
,
R. G.
,
2003
, “
A Survey of Mathematical Methods for the Construction of Geometric Tolerance Zones
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
1
), pp.
64
75
.
5.
Ameta
,
G.
,
Samper
,
S.
, and
Giordano
,
M.
,
2011
, “
Comparison of Spatial Math Models for Tolerance Analysis: Tolerance-Maps, Deviation Domain, and TTRS
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021004
.
6.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2007
, “
Navigating the Tolerance-Analysis Maze
,”
Comput. Aided Des. Appl.
,
4
(
5
), pp.
705
718
.
7.
Giordano
,
M.
,
Pairel
,
E.
, and
Samper
,
S.
,
1999
, “
Mathematical Representation of Tolerance Zones
,”
Global Consistency of Tolerances
,
F.
vanHouten
and
H.
Kals
, eds.,
Kluwer
,
Amsterdam, The Netherlands
, pp.
177
186
.
8.
Roy
,
U.
, and
Li
,
B.
,
1999
, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects–II: Size, Orientation and Position Tolerances
,”
Comput. Aided Des.
,
31
(
4
), pp.
273
285
.
9.
Giordano
,
M.
,
Duret
,
D.
,
Tichadou
,
S.
, and
Arrieux
,
R.
,
1992
, “
Clearance Space in Volumic Dimensioning
,”
Ann. CIRP
,
41
(
1
), pp.
565
568
.
10.
Homri
,
L.
,
Teissandier
,
D.
, and
Ballu
,
A.
,
2015
, “
Tolerance Analysis by Polytopes: Taking Into Account Degrees of Freedom With Cap Half-Spaces
,”
Comput. Aided Des.
,
62
, pp.
112
130
.
11.
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2012
, “
Modeling of Geometric Variations for Line-Profiles
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041004
.
12.
Davidson
,
J. K.
,
Savaliya
,
S. B.
,
He
,
Y.
, and
Shah Jami
,
J.
,
2012
, “
Methods of Robotics and the Pseudoinverse to Obtain the Least-Squares Fit of Measured Points on Line-Profiles
,”
ASME
Paper No. DETC2012-70203.
13.
Savaliya
,
S. B.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2013
, “
Using Planar Kinematics to Construct the Full 4D Tolerance-Map for a Line-Profile
,”
ASME
Paper No. DETC2013-12682.
14.
He
,
Y.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2015
, “
Tolerance-Maps for Line-Profiles Constructed From Boolean Intersection of T-Map Primitives for Arc-Segments
,”
J. Zhejiang Univ. Sci. A
,
16
(
5
), pp.
341
352
.
15.
He
,
Y.
,
2013
, “
Generation of Tolerance-Maps for Line-Profiles by Primitive T-Map Elements
,”
M.S. thesis
, Arizona State University, Tempe, AZ.
16.
Spatial Corp.
,
2012
, “
3D ACISModeler
,” accessed April 26, 2016, https://doc.spatial.com/get_doc_page/articles/a/c/i/Portal~ACIS_e5cc.html
17.
Teissandier
,
D.
,
2012
, “
Contribution à l'analyse des tolerances géométriques d'un système mécanique par des polytopes
,” Ph.D. Habilitation, Université Bordeaux 1, Bordeaux, France.
18.
Davidson
,
J. K.
,
Shah
,
J. J.
, and
Mujezinović
,
A.
,
2005
, “
Method and Apparatus for Geometric Variations to Integrate Parametric Computer-Aided Design With Tolerance Analysis and Optimization
,”
U.S. Patent No. 6,963,824
.
19.
Coxeter
,
H. S. M.
,
1969
,
Introduction to Geometry
,
2nd ed.
,
Wiley
,
Toronto, ON, Canada
.
20.
Lawrence
,
J. D.
,
1972
,
A Catalog of Special Plane Curves
,
Dover
,
New York
.
21.
Von Seggern
,
D. H.
,
1993
,
CRC Standard Curves and Surfaces
,
CRC Press
,
Boca Raton, FL
.
22.
Hunt
,
K. H.
,
1979
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford, UK
.
23.
Hain
,
K.
,
1967
,
Applied Kinematics
,
2nd ed.
,
McGraw-Hill
,
New York
.
24.
Mohan
,
P.
,
Haghighi
,
P.
,
Vemulapalli
,
P.
,
Kalish
,
N.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2014
, “
Toward Automated Tolerancing of Mechanical Assemblies: Assembly Analyses
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
4
), p.
041009
.
25.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2013
,
Theory of Machines and Mechanisms
,
Oxford University Press
,
Oxford, UK
.
26.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
Oxford, UK
.
27.
Brannan
,
D. A.
,
Esplen
,
M. F.
, and
Gray
,
J. J.
,
2012
,
Geometry
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
28.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2010
, “
Statistical Tolerance Allocation for Tab-Slot Assemblies Utilizing Tolerance-Maps
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
1
), p.
011005
.
29.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2011
, “
Effects of Size, Orientation, and Form Tolerances on the Frequency Distributions of Clearance Between Two Planar Faces
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
1
), p.
011002
.
30.
“Equation of Circle Passing through 3 Given Points,” accessed April 26, 2016, www.qc.edu.hk/math/Advanced Level/circle given 3 points.htm
This content is only available via PDF.
You do not currently have access to this content.