Virtual tools and methods are becoming increasingly important in order to predict the geometric outcome in early phases of the product realization process. Method of influence coefficients (MIC) in combination with Monte Carlo simulation (MCS) is a well-known technique that can be used in nonrigid variation simulation. In these simulations, contact modeling is important to ensure a correct result. Contact modeling simulates how mating surfaces are hindered from penetrating each other, giving rise to contact forces that contribute to the deformation of the parts when assembled and the final shape of the subassembly after springback. These contact forces have to be taken into consideration in each MCS-iteration. To secure reasonable response times, the calculation of the contact forces needs to be fast. In this paper, we formulate a quadratic programming (QP) problem to solve the contact problem. The case studies presented show that node-based contact modeling can be efficiently solved through QP.

References

References
1.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Dahlström
,
S.
,
2006
, “
Computer-Aided Robustness Analysis for Compliant Assemblies
,”
ASME J. Eng. Des.
,
17
(
5
), pp.
411
428
.
2.
Dahlström
,
S.
,
2005
, “
Variation Simulation of Sheet Metal Assemblies for Geometrical Quality, Parameter Modeling and Analysis
,”
Ph.D. thesis
, Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden.
3.
Wärmefjord
,
K.
,
2011
, “
Variation Control in Virtual Product Realization—A Statistical Approach
,”
Ph.D. thesis
, Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden.
4.
Söderberg
,
R.
, and
Carlson
,
J. S.
,
1999
, “
Locating Scheme Analysis for Robust Assembly and Fixture Design
,”
ASME
Paper No. DETC99/DAC-86901999.
5.
Segeborn
,
J.
,
2011
, “
Cost-Effective Sheet Metal Assembly by Automatic Path Planning and Line Balancing, Integrated With Dimensional Variation Analysis
,”
Ph.D. thesis
, Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden.
6.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
7.
Hu
,
S. J.
, and
Wu
,
S. M.
,
1992
, “
Identifying Sources of Variation in Automobile Body Assembly Using Principal Component Analysis
,” Trans. NAMRI/SME,
20
, pp.
311
316
.
8.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2003
, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
9.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Marin
,
S. P.
,
2004
, “
Compliant Assembly Variation Analysis Using Component Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
355
360
.
10.
Liu
,
Y. G.
, and
Hu
,
S. J.
,
2005
, “
Assembly Fixture Fault Diagnosis Using Designated Component Analysis
,”
Trans. ASME
,
127
(
2
), pp.
358
368
.
11.
Camelio
,
J. A.
, and
Yim
,
H.
,
2006
, “
Identification of Dimensional Variation Patterns on Compliant Assemblies
,”
J. Manuf. Syst.
,
25
(
2
), pp.
65
76
.
12.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Zhong
,
W. P.
,
2004
, “
Diagnosis of Multiple Fixture Faults in Machining Processes Using Designated Component Analysis
,”
J. Manuf. Syst.
,
23
(
4
), pp.
309
315
.
13.
Conry
,
T. F.
, and
Seireg
,
A.
,
1971
, “
A Mathematical Programming Method for Design of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
387
392
.
14.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
.
15.
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2009
, “
Tolerance Simulation of Compliant Sheet Metal Assemblies Using Automatic Node-Based Contact Detection
,”
ASME
Paper No. IMECE2008-66344.
16.
Ungemach
,
G.
, and
Mantwill
,
F.
,
2009
, “
Efficient Consideration of Contact in Compliant Assembly Variation Analysis
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011005
.
17.
Xie
,
K.
,
Wells
,
L.
,
Camelio
,
J. A.
, and
Youn
,
B. D.
,
2007
, “
Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
934
942
.
18.
Wolfe
,
P.
,
1959
, “
The Simplex Method for Quadratic Programming
,”
Econometrica
,
27
(
3
), pp.
382
398
.
19.
Dantzig
,
G. B.
,
1998
,
Linear Programming and Extensions
,
Princeton University Press
,
Princeton, NJ
.
20.
Nanda
,
A. P.
, and
Mannfolk
,
S.
,
2014
, “
Heat Dependent Squeak & Rattle Simulation Using the E-Line Method in Combination With Variation Simulation
,” Master thesis, Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden.
21.
Weber
,
J.
,
Sabiniarz
,
P.
,
Wickman
,
C.
,
Lindqvist
,
L.
, and
Söderberg
,
R.
,
2013
, “
Squeak & Rattle Simulation at Volvo Car Corporation Using the E-LINE™ Method
,” 5th
ANSA & μETA
International Conference
, Thessaloniki, Greece, June 5–7.
22.
Weber
,
J.
, and
Benhayoun
,
I.
,
2012
, “
Squeak & Rattle Correlation in Time Domain Using the SAR-LINE™ Method
,”
SAE Int. J. Passeng. Cars Mech. Syst.
,
5
(
3
), pp.
1124
1132
.
23.
Weber
,
J.
, and
Benhayoun
,
I.
,
2011
, “
Squeak & Rattle Simulation—A Success Enabler in the Development of the New Saab 9-5 Cockpit Without Prototype Hardware
,”
SAE Int. J. Passeng. Cars Mech. Syst.
,
3
(
1
), pp.
936
947
.
24.
RD&T
,
2011
,
RD&T Manual, Version 1.13
,
Göteborg
,
Sweden
.
You do not currently have access to this content.