Simulation-based methods are emerging to address the challenges of complex systems risk assessment, and this paper identifies two problems related to the use of such methods. First, the methods cannot identify new hazards if the simulation model builders are expected to foresee the hazards and incorporate the abnormal behavior related to the hazard into the simulation model. Therefore, this paper uses the concept of deviation from design intent to systematically capture abnormal conditions that may lead to component failures, hazards, or both. Second, simulation-based risk assessment methods should explicitly consider what expertise is required from the experts that build and use the simulation models—the transfer of the methods to real engineering practice will be severely hindered if they must be performed by persons that are expert in domain safety as well as advanced computer simulation-based methods. This paper addresses both problems in the context of the functional failure identification and propagation (FFIP) method. One industrially established risk assessment method, hazard and operability study (HAZOP), is harnessed to systematically obtain the deviations from design intent in the application under study. An information system presents a user interface that is understandable to HAZOP professionals, so that their inputs are transparently entered to a data model that captures the deviations. From the data model, instructions for configuring FFIP simulation models are printed in a form that is understandable for FFIP experts. The method is demonstrated for discovering a hazard resulting from system-wide fault propagation in a boiling water reactor case.

References

References
1.
Jensen
,
D.
,
Tumer
,
I.
, and
Kurtoglu
,
T.
,
2009
, “
Flow State Logic (FSL) for Analysis of Failure Propagation in Early Design
,”
ASME
Paper No. DETC2009-87064.
2.
Sierla
,
S.
,
O'Halloran
,
B. M.
,
Karhela
,
T.
,
Papakonstantinou
,
N.
, and
Tumer
,
I. Y.
,
2013
, “
Common Cause Failure Analysis of Cyber-Physical Systems Situated in Constructed Environments
,”
Res. Eng. Des.
,
24
(
4
), pp.
375
394
.
3.
Kurtoglu
,
T.
, and
Tumer
,
I.
,
2008
, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
Mech. Des.
,
130
(
5
), p.
051401
.
4.
Redmill
,
F.
,
Chudleigh
,
M.
, and
Catmur
,
J.
,
1999
,
System Safety: Hazop and Software Hazop
,
Wiley
,
Chichester, UK
.
5.
Vesely
,
W. E.
,
1987
,
Fault Tree Handbook
,
Government Printing Office
,
Washington, DC
.
6.
IEC,
1990
, “
61025: Fault Tree Analysis
,” International Electrotechnical Commission (IEC),
Geneva, Switzerland
.
7.
Ericson
,
C. A.
,
1999
,
Fault Tree Analysis—A History
, System Safety Conference, Orlando, FL.
8.
Dhillon
,
B. S.
, and
Singh
,
C.
,
1981
,
Engineering Reliability-New Techniques and Applications
,
Wiley
,
New York
, Chap. 4.
9.
Stamatis
,
D. H.
,
2003
,
Failure Mode and Effect Analysis: FMEA From Theory to Execution
,
ASQ Quality Press
,
Milwaukee, WI
.
10.
Government, U. S.
,
1980
,
Mil-Std-1629a—Procedures for Performing a Failure Mode Effect and Criticality Analysis
, Reliability Information Analysis Center (
RIAC
),
Rome, NY
.
11.
Modarres
,
M.
,
Kaminskiy
,
M.
, and
Krivtsov
,
V.
,
2010
,
Reliability Engineering and Risk Analysis a Practical Guide
,
CRC Press
,
Boca Raton, FL
.
12.
Blischk
,
W. R.
, and
Murthy
,
D. N. P.
,
2000
,
Reliability Modeling, Prediction, and Optimization
,
Wiley
,
Hoboken, NJ
.
13.
Teng
,
S.-H.
, and
Ho
,
S.-Y.
,
1996
, “
Failure Mode and Effects Analysis: An Integrated Approach for Product Design and Process Control
,”
Int. J. Qual. Reliab. Manage.
,
13
(
5
), pp.
8
26
.
14.
Wang
,
J. X.
, and
Rous
,
M. L.
,
2000
,
What Every Engineer Should Know About Risk Engineering and Management
,
CRC Press
,
Boca Raton, FL
.
15.
Huanga
,
D.
,
Chenb
,
T.
, and
Wang
,
M.-J. J.
,
2001
, “
A Fuzzy Set Approach for Event Tree Analysis
,”
Fuzzy Sets Syst.
,
118
(
1
), pp.
153
165
.
16.
Kenarangui
,
R.
,
1991
, “
Event-Tree Analysis by Fuzzy Probability
,”
IEEE Trans. Reliab.
,
40
(
1
), pp.
120
124
.
17.
Ferdous
,
R.
,
Khan
,
F.
,
Sadiq
,
R.
,
Amyotto
,
P.
, and
Veitch
,
B.
,
2009
, “
Handling Data Uncertainties in Event Tree Analysis
,”
Process Saf. Environ. Prot.
,
87
(
5
), pp.
283
292
.
18.
Fullwood
,
R. R.
,
2000
,
Probabilistic Safety Assessment in the Chemical and Nuclear Industries
,
Butterworth-Heinemann
,
Oxford, UK
.
19.
Bedford
,
T.
, and
Cooke
,
R.
,
2001
,
Probabilistic Risk Analysis: Foundations and Methods
,
Cambridge University
,
Cambridge, UK
.
20.
Stewart
,
M.
, and
Melchers
,
R. E.
,
1997
,
Probabilistic Risk Assessment of Engineering Systems
,
Springer
,
Cambridge, UK
.
21.
Stamatelatos
,
M.
,
2000
,
Probabilistic Risk Assessment: What Is It and Why Is It Worth It?
NASA, Safety and Mission Assurance
Washington, DC
.
22.
Stamatelatos
,
M.
, and
Apostolakis
,
G.
,
2002
,
Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners
,
NASA, Safety and Mission Assurance
,
Washington, DC
.
23.
Kumamoto
,
H.
, and
Henley
,
E. J.
,
1996
,
Probabilistic Risk Assessment and Management for Engineers and Scientists
,
IEEE Press
,
New York
.
24.
Hiller
,
M.
,
Jhumka
,
A.
, and
Suri
,
N.
,
2004
, “
Epic: Profiling the Propagation and Effect of Data Errors in Software
,”
IEEE Trans. Comput.
,
53
(
5
), pp.
512
530
.
25.
Remenyte-Prescott
,
R.
, and
Andrews
,
J. D.
,
2011
, “
Modeling Fault Propagation in Phased Mission Systems Using Petri Nets
,”
Proceedings of the Reliability and Maintainability Symposium (RAMS)
,
Lake Buena Vista, FL
, pp.
1
6
.
26.
Han
,
G.-C.
,
Sun
,
S.-D.
,
Si
,
S.-B.
, and
Fu
,
P.
,
2005
, “
Research on Model of Fault Diagnosis and Propagation in Complex System
,”
Proceedings of the Computer Integrated Manufacturing Systems, (CIMS)
.
27.
Ness
,
P. S.
,
Bereket
,
D.
,
Hakimi
,
M.
,
Uthus
,
T.
, and
Chakravarty
,
A.
,
1989
, “
Knowledge Based Tool for Failure Propagation Analysis
,”
Proceedings of the American Control Conference
,
Pittsburgh, PA
, pp.
344
348
.
28.
Augustine
,
M.
,
Yadav
,
O. P.
,
Jain
,
R.
, and
Rathore
,
A.
,
2012
, “
Cognitive Map-Based System Modeling for Identifying Interaction Failure Modes
,”
Res. Eng. Des.
,
23
(
2
), pp.
105
124
.
29.
Mohamed
,
A.
, and
Zulkernine
,
M.
,
2008
, “
On Failure Propagation in Component-Based Software Systems
,”
Proceedings of the Eighth International Conference on Quality Software
,
Oxford, UK
, pp.
402
411
.
30.
Voas
,
J.
,
1997
, “
Error Propagation Analysis for Cots Systems
,”
Comput. Control Eng.
,
8
(
6
), pp.
269
272
.
31.
Nassar
,
D. M.
,
Shereshevsky
,
M.
,
Gradetsky
,
N.
,
Gunnalan
,
R.
,
Ammar
,
H. H.
,
Yu
,
B.
, and
Mili
,
A.
,
2004
, “
Error Propagation in Software Architectures
,”
Proceedings of the Tenth International Symposium on Software Metrics
,
Chicago, IL
, pp.
384
393
.
32.
Hiller
,
M.
,
Jhumka
,
A.
, and
Suri
,
N.
,
2001
, “
An Approach for Analyzing the Propagation of Data Errors in Software
,”
Proceedings of the International Conference on Dependable Systems and Networks
,
Washington, DC
, pp.
161
170
.
33.
Hiller
,
M.
,
Jhumka
,
A.
, and
Suri
,
N.
,
2002
,
Propane: An Environment for Examining the Propagation of Errors in Software
,
ISSTA
,
Rome, Italy
.
34.
Ge
,
X.
,
Paige
,
R. F.
, and
Mcdermid
,
J. A.
,
2009
, “
Probabilistic Failure Propagation and Transformation Analysis
,”
Proceedings of the 28th International Conference on Computer Safety, Reliability, and Security
,
Hamburg, Germany
, pp.
215
228
.
35.
Wallace
,
M.
,
2005
, “
Modular Architectural Representation and Analysis of Fault Propagation and Transformation
,”
Electron. Notes Theor. Comput. Sci.
,
141
(
3
), pp.
53
71
.
36.
Stock
,
M.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2005
, “
Comparing Two Levels of Functional Detail for Mapping Historical Failures: You are Only as Good as Your Knowledge Base
,”
ASME
Paper No. IMECE2003-41593.
37.
Stock
,
M.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2005
, “
Linking Product Functionality to Historic Failures to Improve Failure Analysis in Design
,”
Res. Eng. Des.
,
16
(
2
), pp.
96
108
.
38.
Tumer
,
I. Y.
, and
Stone
,
R. B.
,
2003
, “
Analytical Methods for Mapping Function to Failure During High-Risk Component Development
,”
Res. Eng. Des.
,
14
(
1
), pp.
25
33
.
39.
Krus
,
D.
, and
Lough
,
K. G.
,
2007
, “
Applying Function-Based Failure Propagation in Conceptual Design
,”
ASME
Paper No. DETC2007-35475.
40.
Wang
,
K.-L.
, and
Jin
,
Y.
,
2002
, “
An Analytical Approach to Functional Design
,”
ASME
Paper No. DETC2002/DAC-34084.
41.
Huang
,
Z.
, and
Jin
,
Y.
,
2008
, “
Stress and Conceptual Strength for Functional Design for Reliability
,”
ASME
Paper No. DETC2008-49347.
42.
Kurtoglu
,
T.
,
Tumer
,
I. Y.
, and
Jensen
,
D. C.
,
2010
, “
A Functional Failure Reasoning Methodology for Evaluation of Conceptual System Architectures
,”
Res. Eng. Des.
,
21
(
4
), pp.
209
234
.
43.
Papakonstantinou
,
N.
,
Sierla
,
S.
,
Tumer
,
I. Y.
, and
Jensen
,
D. C.
,
2012
, “
Using Fault Propagation Analyses for Early Elimination of Unreliable Design Alternatives of Complex Cyber-Physical Systems
,”
ASME
Paper No. DETC2012-70241.
44.
Jensen
,
D.
,
Tumer
,
I.
, and
Kurtoglu
,
T.
,
2009
, “
Design of an Electrical Power System Using a Functional Failure and Flow State Logic Reasoning Methodology
,”
Annual Conference of the Prognostics and Health Management Society
,
San Diego, CA
.
45.
Jensen
,
D.
,
Tumer
,
I. Y.
, and
Kurtoglu
,
T.
,
2008
, “
Modeling the Propagation of Failures in Software-Driven Hardware Systems to Enable Risk-Informed Design
,”
ASME
Paper No. IMECE2008-68861.
46.
Tumer
,
I. Y.
, and
Smidts
,
C. S.
,
2010
, “
Integrated Design and Analysis of Software-Driven Hardware Systems
,”
IEEE Trans. Comput.
,
60
(
8
), pp.
1072
1084
.
47.
Sierla
,
S.
,
Tumer
,
I.
,
Papakonstantinou
,
N.
,
Koskinen
,
K.
, and
Jensen
,
D.
,
2012
, “
Early Integration of Safety to the Mechatronic System Design Process by the Functional Failure Identification and Propagation Framework
,”
Mechatronics
,
22
(
2
), pp.
137
151
.
48.
Papakonstantinou
,
N.
,
Jensen
,
D.
,
Sierla
,
S.
, and
Tumer
,
I.
,
2011
, “
Capturing Interactions and Emergent Failure Behavior in Complex Engineered Systems and Multiple Scales
,”
ASME
Paper No. DETC2011-47767.
49.
Zhang
,
W.
,
Kamgarpour
,
M.
,
Sun
,
D.
, and
Tomlin
,
C. J.
,
2012
, “
A Hierarchical Flight Planning Framework for Air Traffic Management
,”
Proc. IEEE Spec. Issue CPS
,
100
(
1
), pp.
179
194
.
50.
Yuan
,
Y.
, and
Wang
,
D.
,
2009
, “
Path Selection Model and Algorithm for Emergency Logistics Management
,”
Comput. Ind. Eng.
,
56
(
3
), pp.
1081
1094
.
51.
Choi
,
J. S.
,
Kim
,
M. B.
, and
Choi
,
D. H.
,
2005
, “
Experimental Investigation on Smoke Propagation in a Transversely Ventilated Tunnel
,”
J. Fire Sci.
,
23
(
6
), pp.
469
483
.
52.
Hostikka
,
S.
, and
Keski-Rahkonen
,
O.
,
2003
, “
Probabilistic Simulation of Fire Scenarios
,”
J. Nucl. Eng. Des.
,
224
(
3
), pp.
301
311
.
53.
Banerjee
,
A.
,
Kandula
,
S.
,
Mukherjee
,
T.
, and
Gupta
,
S. K. S.
, “
Band-Aide: A Tool for Cyber-Physical Oriented Analysis and Design of Body Area Networks and Devices
,”
J. ACM Trans. Embedded Comput. Syst. (TECS)
,
11
(
S2
), p. 49.
54.
Vacondio
,
R.
,
Rogers
,
B. D.
,
Stansby
,
P. K.
, and
Mignosa
,
P.
,
2012
, “
SPH Modeling of Shallow Flow With Open Boundaries for Practical Flood Simulation
,”
J. Hydraul. Eng.
,
138
(
6
), pp.
530
541
.
55.
Liang
,
Q.
,
2010
, “
Flood Simulation Using a Well-Balanced Shallow Flow Model
,”
J. Hydraul. Eng.
,
136
(
9
), pp.
669
675
.
56.
Hossain
,
A. K. M. A.
,
Jia
,
Y.
,
Ying
,
X.
,
Zhang
,
Y.
, and
Zhu
,
T. T.
,
2011
, “
Visualization of Urban Area Flood Simulation in Realistic 3D Environment
,”
Proceedings of the World Environmental and Water Resources Congress
,
Palm Springs, CA
, pp.
1973
1980
.
57.
Chen
,
Y.
,
Zhu
,
D.
, and
Zhao
,
J.
,
2004
, “
Small Basin Flash Flood Simulation With Topmodel
,”
Proceedings of the International Conference of GIS and Remote Sensing in Hydrology, Water Resources and Environment (ICGRSHWE)
,
Three Gorges Dam, China
, pp.
41
49
.
58.
Castrillón
,
M.
,
Jorge
,
P. A.
,
López
,
I. J.
,
Macías
,
A.
,
Martín
,
D.
,
Nebot
,
R. J.
,
Sabbagh
,
I.
,
Quintana
,
F. M.
,
Sánchez
,
J.
,
Sánchez
,
A. J.
,
Suárez
,
J. P.
, and
Trujillo
,
A.
,
2011
, “
Forecasting and Visualization of Wildfires in a 3D Geographical Information System
,”
Comput. Geosci.
,
37
(
3
), pp.
390
396
.
59.
Ali
,
A. N. A.
, and
Ariffin
,
J.
,
2011
, “
Model Reliability Assessment: A Hydrodynamic Modeling Approach for Flood Simulation in Damansara Catchment Using Infoworks RS
,”
Proceedings of the Advanced Materials Research Conference
,
Haikou, China
, pp.
3769
3775
.
60.
Crowell
,
W.
,
Denson
,
W.
,
Jaworski
,
P.
, and
Mahar
,
D.
,
1997
,
Failure Mode/Mechanism Distribution 1997
,
Reliability Information Analysis Center
,
Rome, Italy
.
61.
Hata
,
T.
,
Kobayashi
,
N.
,
Kimura
,
F.
, and
Suzuki
,
H.
,
2000
, “
Representation of Functional Relations Among Parts and Its Applications to Product Failure Reasoning
,”
J. Manuf. Sci. Prod.
,
3
(
2–4
), pp.
77
84
.
62.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Vanwie
,
M.
,
2005
, “
The Function-Failure Design Method
,”
ASME J. Mech. Des.
,
127
(3), pp.
397
407
.
63.
Grantham Lough
,
K.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2007
, “
The Risk in Early Design Method (Red)
,”
J. Eng. Des.
,
18
(
1
).
64.
O'halloran
,
B. M.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2011
, “
Link Between Function-Flow Failure Rates and Failure Modes for Early Design Stage Reliability Analysis
,”
ASME
Paper No. IMECE2011-63110.
65.
O'halloran
,
B. M.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2013
, “
Developing New Design Requirements to Reduce Failures in Early Complex Systems Design
,”
ASME
Paper No. DETC2013-12626.
66.
Gong
,
L.
,
Zhang
,
S.
,
Liu
,
X.
, and
Qiu
,
T.
,
2011
, “
Research on Hazard Identification of Turbo-Fan Engine Digital Control Systems Based on Functional Hazard Analysis
,”
Chin. Soc. Aeronaut. Astronaut.
,
32
(
12
), pp.
2194
2203
.
67.
Hirtz
,
J.
,
Stone
,
R.
,
Mcadams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
68.
VTT
,
2013
, Apros Process Simulation Software, Jan. 31, 2013, http://www.apros.fi/en/references/nuclear_references
69.
Juslin
,
K.
,
2005
,
A Companion Model Approach to Modelling and Simulation of Industrial Processes
,
Doctoral Aalto University
,
Espoo, Finland
.
You do not currently have access to this content.