The product assembly quality is influenced by the coupling effect of multiscale geometric errors. Acquiring the influence of dimension, tolerance and microtopography on part surface quality is the key factor of improving prediction accuracy of product assembly quality. Since the current technology of part solid modeling is difficult to represent tolerance information and surface topography information in computer aided design (CAD) model uniformly, and the accuracy of product assembly simulation and analysis is reduced, the realistic geometry based feature modeling of complex part and its application in assembly quality analysis are studied in this paper. First of all, the novel concept of realistic geometry is proposed, which integrates several geometric elements such as ideal geometry, variational geometry, and fractal geometry. Then, the hierarchical representation model of realistic geometric feature information of complex part is established, and the concrete method and steps to generate the realistic geometric solid features of complex part are proposed. Finally, the efficiency and feasibility of the proposed theory in this paper are validated by assembly quality analysis of the guide rail and sliding table of the machine tool.

References

References
1.
Trabelsi
,
A.
, and
Delchambre
,
A.
,
2000
, “
Assessment on Tolerance Representation and Tolerance Analysis in Assemblies
,”
Concurrent Eng.: Res. Appl.
,
8
(
4
), pp.
244
262
.10.1177/1063293X0000800401
2.
Davidson
,
J. K.
,
Mujezinović
,
A.
, and
Shah
,
J. J.
,
2002
, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
609
622
.10.1115/1.1497362
3.
Mujezinović
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2004
, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
504
518
.10.1115/1.1701881
4.
Desrochers
,
A.
,
2003
, “
A CAD/CAM Representation Model Applied to Tolerance Transfer Methods
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
14
22
.10.1115/1.1543974
5.
Zhang
,
K. F.
,
Li
,
Y.
, and
Tang
,
S. L.
,
2010
, “
An Integrated Modeling Method of Unified Tolerance Representation for Mechanical Product
,”
Int. J. Adv. Manuf. Technol.
,
46
(
1–4
), pp.
217
226
.10.1007/s00170-009-2062-3
6.
Liu
,
Y. S.
,
Wu
,
S. T.
,
Yang
,
J. X.
, and
Gao
,
S. M.
,
2001
, “
Mathematical Model of Size Tolerance for Plane Based on Mathematical Definition
,”
J. Mech. Eng.
,
37
(
9
), pp.
12
17
.10.3321/j.issn:0577-6686.2001.09.004
7.
Zhang
,
Y.
,
Huang
,
K. Z.
, and
Gao
,
C. Q.
,
2006
, “
Study on Tolerance Representation Model Based on Function Surface
,”
Mach. Tool Hydraul.
,
3
, pp.
13
15
.10.3969/j.issn.1001-3881.2006.03.004
8.
Yang
,
J. X.
,
Xu
,
X. S.
,
Cao
,
Y. L.
, and
Liu
,
Y. C.
,
2010
, “
Functional Tolerance Specification Design Based on Assembly Positioning
,”
J. Mech. Eng.
,
46
(
2
), pp.
1
8
.10.3901/JME.2010.02.001
9.
Liu
,
Y. S.
, and
Gao
,
S. M.
,
2004
, “
Variational Geometry Based Tolerance Pre-Evaluation for Pattern of Holes
,”
Int. J. Prod. Res.
,
42
(
8
), pp.
1659
1675
.10.1080/00207540310001645002
10.
Geometrical Product Specifications (GPS)
,
2004
, “
Geometrical Tolerance—Verification Prescription
,” Paper No. GB/T 1958-2004.
11.
Liu
,
Y. S.
,
2000
,
The Technology of Modeling and Representation of Size, Form and Position Tolerance for Plane Based on Mathematical Definition
,
Zhejiang University
,
Hangzhou, China
.
12.
Qiu
,
C.
,
Liu
,
Z. Y.
,
Tan
,
J. R.
, and
Bu
,
W.
,
2012
, “
Multi-Scale Based Unified Modeling and Simulation of Part Surface Topography
,”
Int. J. Innovative Comput., Inf. Control
,
8
(
3A
), pp.
1787
1798
.
13.
Qiu
,
C.
,
Liu
,
Z. Y.
,
Bu
,
W. H.
, and
Tan
,
J. R.
,
2012
, “
Hybrid Dimension Based Modeling of Part Surface Topography and Identification of Its Characteristic Parameters
,”
Appl. Surf. Sci.
,
258
(
18
), pp.
7082
7093
.10.1016/j.apsusc.2012.03.182
14.
Wu
,
Z. T.
, and
Yang
,
J. X.
,
1999
,
Optimization Design of Computer-Aided Tolerance
,
Zhejiang University Press
,
Hangzhou, China
.
15.
Roy
,
U.
, and
Liu
,
R.
,
1988
, “
Feature Based Representational Scheme of a Solid Modular for Providing Dimensioning and Tolerancing Information
,”
Rob. Comput. Integr. Manuf.
,
4
(
3
), pp.
335
345
.10.1016/0736-5845(88)90004-X
16.
Requicha
,
A. A. G.
, and
Chen
,
S. C.
,
1986
, “
Representation of Geometric Features, Tolerance, and Attributes in Solid Modelers Based on Construction Geometry
,”
IEEE J. Rob. Autom.
,
RA2
(
3
), pp.
156
166
.10.1109/JRA.1986.1087053
17.
Gossard
,
D. C.
,
Zuffante
,
R. P.
, and
Sakurai
,
H.
,
1988
, “
Representing Dimensions, Tolerances and Features in MACE Systems
,”
IEEE Comput. Graphics Appl.
,
3
, pp.
51
59
.10.1109/38.503
18.
Roy
,
U.
, and
Liu
,
R.
,
1989
, “
Tolerance Representation Scheme in Solid Modeling: Parts I & II
,”
Proceedings of the 15th ASME Design Automation Conference
, Montreal, Canada, pp.
1
17
.
19.
Desrochers
,
A.
, and
Clement
,
A. A.
,
1994
, “
Dimensioning and Tolerancing Assistance Model for CAD/CAM Systems
,”
J. Adv. Manuf. Technol.
,
10
(
9
), pp.
352
362
.10.1007/BF01748479
20.
Liu
,
Y. S.
,
Yang
,
J. X.
,
Wu
,
Z. T.
, and
Gao
,
S. M.
,
2001
, “
Survey of Modeling and Representation of Tolerance Information in CAD System
,”
J. Comput. Aided Des. Comput. Graphics
,
13
(
11
), pp.
1048
1055
.10.3321/j.issn:1003-9775.2001.11.016
You do not currently have access to this content.