This paper presents a design system for planar and spherical six-bar linkages, which is integrated with a solid modeler. The user specifies a backbone 3R chain in five task configurations in the sketch mode of the solid modeler and executes the design system. Two RR constraints are computed, which constrain the 3R chain to a single degree-of-freedom six-bar linkage. There are six ways that these constraints can be added to the 3R serial chain to yield as many as 63 different linkages in case of planar six-bar linkages and 165 in case of spherical six-bar linkages. The performance of each candidate is analyzed, and those that meet the required task are presented to the designer for selection. The design algorithm is run iteratively with random variations applied to the task configurations within user-specified tolerance zones, to increase the number of candidate designs. The output is a solid model of the six-bar linkage. Examples are presented, which demonstrate the effectiveness of this strategy for both planar and spherical linkages.

References

References
1.
Kinzel
,
E. C.
,
Schmiedeler
,
J. P.
, and
Pennock
,
G. R.
,
2005
, “
Kinematic Synthesis for Finitely Separated Positions Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1070
1079
.
2.
Kinzel
,
E. C.
,
Schmiedeler
,
J. P.
, and
Pennock
,
G. R.
,
2006
, “
Function Generation With Finitely Separated Precision Points Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1185
1190
.
3.
Soh
,
G. S.
,
Perez-Gracia
,
A.
, and
McCarthy
,
J. M.
,
2006
, “
The Kinematic Synthesis of Mechanically Constrained Planar 3R Chains
,”
First European Conference on Mechanism Science (EuCoMeS)
,
Obergurgl, Austria
, Feb. 21–26.
4.
Soh
,
G. S.
, and
McCarthy
,
J. M.
,
2008
, “
The Synthesis of Six-Bar Linkages as Constrained Planar 3R Chains
,”
Mech. Mach. Theory
,
43
(
2
), pp.
160
170
.
5.
Freudenstein
,
F.
, and
Sandor
,
G. N.
,
1959
, “
Synthesis of Path Generating Mechanisms by Means of a Programmed Digital Computer
,”
ASME J. Eng. Ind.
,
81
, pp.
159
168
.
6.
Kaufman
,
R. E.
, and
Maurer
,
W. G.
,
1971
, “
Interactive Linkage Synthesis on a Small Computer
,” 26th
ACM National Conference
(
ACM '71
), Chicago, Aug. 3–5, pp.
376
387
.
7.
Rubel
,
A. J.
, and
Kaufman
,
R. E.
,
1977
, “
KINSYN III: A New Human-Engineered System for Interactive Computer-Aided Design of Planar Linkages
,”
ASME J. Eng. Ind.
,
99
(
2
), pp.
440
448
.
8.
Burmester
,
L.
,
1888
,
Lehrbuch der Kinematik
, Vol.
1
,
Die ebene Bewegung, Leipzig
,
Germany
.
9.
Erdman
,
A. G.
, and
Gustafson
,
J.
,
1977
, “
LINCAGES: A Linkage Interactive Computer Analysis and Graphically Enhanced Synthesis Package
,”
ASME
Paper No. 77-DTC-5.
10.
Lysdahl
,
H. J.
,
Barris
,
W. C.
,
Riley
,
D.
, and
Erdman
,
A. G.
,
1983
, “
Micro-Linkages - A Mechanism Design Package
,”
OSU Applied Mechanisms Conference
, St. Louis, MO.
11.
Chuang
,
J. C.
,
Strong
,
R. T.
, and
Waldron
,
K. J.
,
1981
, “
Implementation of Solution Rectification Techniques in an Interactive Linkage Synthesis Program
,”
ASME J. Mech. Des.
,
103
(
3
), pp.
657
664
.
12.
Ruth
,
D. A.
, and
McCarthy
,
J. M.
,
1997
, “
SphinxPC: An Implementation of Four Position Synthesis for Planar and Spherical Linkages
,”
ASME
Design Engineering Technical Conferences, Sacramento, CA, Sept.
14
17
.
13.
Furlong
,
T. J.
,
Vance
,
J. M.
, and
Larochelle
,
P. M.
,
1999
, “
Spherical Mechanism Synthesis in Virtual Reality
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
515
520
.
14.
Collins
,
C. L.
,
McCarthy
,
J. M.
,
Perez
,
A.
, and
Su
,
H.
,
2002
, “
The Structure of an Extensible Java Applet for Spatial Linkage Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
1
), pp.
45
49
.
15.
Perez
,
A.
,
Su
,
H.-J.
, and
McCarthy
,
J. M.
,
2004
, “
SYNTHETICA 2.0: Software for the Synthesis of Constrained Serial Chains
,”
ASME
Paper No. DETC2004-57524.
16.
Sonawale
,
K. H.
,
Arredondo
,
A.
, and
McCarthy
,
J. M.
,
2013
, “
Computer Aided Design of Useful Spherical Watt I Six-Bar Linkages
,”
ASME
Paper No. DETC2013-13454.
17.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
2nd ed.
,
Springer
,
New York
.
19.
Tsai
,
L. W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
20.
Parrish
,
B. E.
,
McCarthy
,
J. M.
, and
Eppstein
,
D.
,
2014
, “
Automated Generation of Linkage Loop Equations for Planar 1-DoF Linkages, Demonstrated Up to 8-bar
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011006
.
21.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2014
, “
Numerical Synthesis of Six-Bar Linkages for Mechanical Computation
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031012
.
22.
McCarthy
,
J. M.
, and
Choe
,
J.
,
2010
, “
Difficulty of Kinematic Synthesis of Usable Constrained Planar 6R Robots
,”
12th International Symposium on Advances in Robot Kinematics
, Portoroz, Slovenia, June 28–July 1, pp.
455
463
.
You do not currently have access to this content.