Ontology measurement is an important challenge in the field of knowledge management in order to manage the development of ontology based systems and reduce the risk of project failure. Effective ontology measurement is the precondition on which the meaningful and useful ontology evaluation can be made. We propose a framework to normalize representation of ontologies for their stable measurement, where the semantic enriched representation model (SERM) is proposed as the unique representation for ontologies. By the normalization framework, we provide a four-step procedure to extract ontology entities and calculate measures based on SERM model. Both the theoretical analysis and the experimental results show that our framework is effective and useful to perform stable ontology measurement. It is suitable to measure more expressive ontologies. This framework enables users to perform automatic ontology measurement without much expertise knowledge about ontology programming and reasoning.

References

References
1.
Mizoguchi
,
R.
,
2004
, “
Tutorial on Ontological Engineering: Part 3: Advanced Course of Ontological Engineering
,”
New Gener. Comput.
,
22
(
2
), pp.
198
220
.
2.
Gomez-Perez
,
M.
,
Fernandez-Lopez
,
M.
, and
Corcho
,
O.
,
2004
,
Ontological Engineering: With Examples From the Areas of Knowledge Management, E-Commerce and the Semantic Web
,
Springer
, London.
3.
Razmerita
,
C.
,
2011
, “
An Ontology-Based Framework for Modeling User Behavior—A Case Study in Knowledge Management
,”
IEEE Trans. Syst. Man Cybern., Part A
,
41
(
4
), pp.
772
783
.
4.
Sicilia
,
J.
,
Sicilia
,
M. A.
,
Sanchez-Alonso
,
S.
,
Garcia-Barriocanal
,
E.
, and
Pontikaki
,
M.
,
2009
, “
Knowledge Representation Issues in Ontology-Based Clinical Knowledge Management Systems
,”
Int. J. Technol. Manage.
,
47
(
1–3
), pp.
191
206
.
5.
Lau
,
R.
,
Lai
,
C.
, and
Li
,
Y.
,
2011
, “
Fuzzy Ontology Mining and Semantic Information Granulation for Effective Information Retrieval Decision Making
,”
Int. J. Comput. Intell. Syst.
,
4
(
1
), pp.
54
65
.
6.
Conesa
,
J.
,
Caballe
,
S.
,
Ganon
,
D.
, and
Prieto
,
J.
,
2012
, “
Exploiting the Semantic Web to Represent Information From On-Line Collaborative Learning
,”
Int. J. Comput. Intell. Syst.
,
5
(
4
), pp.
653
667
.
7.
Souza
,
H.
,
Janeiro
,
R.
,
Moura
,
A. M.
, and
Cavalcanti
,
M. C.
,
2010
, “
Integrating Ontologies Based on P2P Mappings
,”
IEEE Trans. Syst. Man Cybern., Part A
,
40
(
5
), pp.
1071
1082
.
8.
Alexiev
,
V.
,
Breu
,
M.
,
Brujin
,
J.
,
Fensel
,
D.
,
Lara
,
R.
, and
Lausen
,
H.
,
2005
,
Information Integration With Ontologies: Experiences From an Industrial Showcase
,
Wiley
, Chichester, UK.
9.
Ding
,
L.
,
Finin
,
T.
,
Joshi
,
A.
,
Pan
,
R.
,
Cost
,
R. S.
,
Peng
,
Y.
,
Reddivari
,
P.
,
Doshi
,
V.
, and
Sachs
,
J.
,
2004
, “
Swoogle: A Search and Metadata Engine for the Semantic Web
,”
13th ACM Conference on Information and Knowledge Management (CIKM)
, Graz, Austria, Sept. 4–6, pp.
652
659
.
10.
Simperl
,
E.
,
2009
, “
Reusing Ontologies on the Semantic Web: A Feasibility Study
,”
Data Knowl. Eng.
,
68
(
10
), pp.
905
925
.
11.
Gaeta
,
M.
,
Orciuoli
,
F.
,
Paolozzi
,
S.
, and
Salerno
,
S.
,
2011
, “
Ontology Extraction for Knowledge Reuse: The e-Learning Perspective
,”
IEEE Trans. Syst. Man Cybern., Part A
,
40
(
4
), pp.
798
809
.
12.
Orme
,
A.
,
Yao
,
H.
, and
Etzkorn
,
H.
,
2007
, “
Indicating Ontology Data Quality, Stability, and Completeness Throughout Ontology Evolution
,”
J. Software Maint. Evol.: Res. Pract.
,
19
(
1
), pp.
49
75
.
13.
Gangemi
,
C.
,
Catenaccia
,
M.
,
Ciaramita
,
J.
, and
Lehmann
,
J.
,
2006
, “
Qood Grid: A Metaontology Based Framework for Ontology Evaluation and Selection
,” 15th International World Wide Web Conference (WWW2006) Workshop: Evaluation of Ontologies for the Web (EON2006), Edinburgh, UK, May 22.
14.
Tartir
,
S.
,
Arpinar
,
I.
,
Moore
,
M.
,
Sheth
,
A. P.
, and
Aleman-Meza
,
B.
,
2005
, “
OntoQA: Metric-Based Ontology Quality Analysis
,” IEEE Workshop on Knowledge Acquisition From Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, Houston, TX, Nov. 27.
15.
Orme
,
A.
,
Yao
,
H.
, and
Etzkorn
,
L.
,
2009
, “
Complexity Metrics for Ontology Based Information
,”
Int. J. Technol. Manage.
,
47
(
1–3
), pp.
161
173
.
16.
Lozano-Tello
,
A.
, and
Gomez-Perez
,
A.
,
2004
, “
OntoMetric: A Method to Choose the Appropriate Ontology
,”
J. Database Manage.
,
15
(
2
), pp.
1
18
.
17.
Ma
,
Y.
,
Wu
,
H.
,
Ma
,
X.
,
Jin
,
B.
,
Huang
,
T.
, and
Wei
,
J.
,
2011
, “
Stable Cohesion Metrics for Evolving Ontologies
,”
J. Software Maint. Evol.: Res. Pract.
,
23
(
5
), pp.
343
359
.
18.
Ma
,
Y.
,
2010
, “
Towards Stable Semantic Ontology Measurement
,”
Ninth International Semantic Web Conference (ISWC2010), Shanghai, Nov. 7–11, Posters and Demos
, pp.
21
24
.
19.
Ensan
,
F.
, and
Du
,
W.
,
2010
, “
A Metric Suite for Evaluating Cohesion and Coupling in Modular Ontologies
,”
Conference on Modular Ontologies
(
WoMO 2010
), Toronto, Canada, May 11.
20.
Oh
,
S.
,
Yeom
,
H.
, and
Ahn
,
J.
,
2011
, “
Cohesion and Coupling Metrics for Ontology Modules
,”
Inf. Technol. Manage.
,
12
(
2
), pp.
81
96
.
21.
Zhang
,
H.
,
Li
,
Y.
, and
Tan
,
H.
,
2010
, “
Measuring Design Complexity of Semantic Web Ontologies
,”
J. Syst. Software
,
83
(
5
), pp.
803
814
.
22.
Ma
,
Y.
,
Jin
,
B.
, and
Feng
,
Y.
,
2010
, “
Semantic Oriented Ontology Cohesion Metrics for Ontology-Based Systems
,”
J. Syst. Software
,
83
(
1
), pp.
143
152
.
23.
Rudolph
,
S.
,
Krotzsch
,
M.
, and
Hitzler
,
P.
,
2008
, “
Description Logic Reasoning With Decision Diagrams: Compiling SHIQ to Disjunctive Datalog
,”
International Semantic Web Conference
(
ISWC2008
), Karlsruhe, Germany, Oct. 26–30, pp.
435
450
.
24.
Zhuge
,
H.
,
2009
, “
Communities and Emerging Semantics in Semantic Link Network: Discovery and Learning
,”
IEEE Trans. Knowl. Data Eng.
,
21
(
6
), pp.
785
799
.
25.
W3C
,
2004
, “
OWL Web Ontology Language Overview
,” World Wide Web Consortium (W3C), MIT, Cambridge, MA, http://www.w3.org/TR/owl-features/
26.
W3C
,
2012
, “OWL 2 Web Ontology Language Document Overview,” 2nd ed., World Wide Web Consortium (W3C), MIT, Cambridge, MA, http://www.w3.org/TR/owl2-overview/
27.
Sirin
,
E.
,
Parsia
,
B.
,
Grau
,
B. C.
,
Kalyanpur
,
A.
, and
Katz
,
Y.
,
2007
, “
Pellet: A Practical OWL-DL Reasoner
,”
J. Web Semant.
,
5
(
2
), pp.
51
53
.
28.
Racer, 2010, “RacerPro,” Racer Systems GmbH, Hamburg, Germany
, http://www.racer-systems.com/
29.
Google Code, 2014, “Fact++,”
http://code.google.com/p/factplusplus/
30.
Motik
,
B.
,
2006
, “
Reasoning in Description Logics Using Resolution and Deductive Databases
,” Ph.D. thesis, University of Karlsruhe, Karlsruhe, Germany.
31.
Ma
,
Y.
,
Liu
,
S.
,
Jin
,
B.
, and
Xu
,
G.
,
2010
, “
Inconsistent Ontology Revision Based on Ontology Constructs
,”
Expert Syst. Appl.
,
37
(
10
), pp.
7269
7275
.
32.
Lawler
,
J.
, and
Kitchenham
,
B.
,
2003
, “
Measurement Modeling Technology
,”
IEEE Software
,
20
(
3
), pp.
68
75
.
You do not currently have access to this content.