The required level of detail (LOD) of a three-dimensional computer-aided design (3D CAD) model differs according to its purpose. It is therefore important that users are able to simplify a highly complex 3D CAD model and create a low-complexity one. The simplification of a 3D CAD model requires the application of a simplification operation and evaluation metrics for the geometric elements of the 3D CAD model. The evaluation metrics are used to select those elements that should be removed. The simplification operation removes selected elements in order to simplify the 3D CAD model. In this paper, we propose the graph-based simplification of feature-based 3D CAD models using a method that preserves connectivity. First, new evaluation metrics that consider the discrimination priority among several simplification criteria are proposed. Second, a graph-based refined simplification operation that prevents the separation of a feature-based 3D CAD model into multiple volumes is proposed. Finally, we verify the proposed method by implementing a prototype system and performing simplification experiments using feature-based 3D CAD models.

References

References
1.
Kwon
,
S.
,
Kim
,
B. C.
,
Mun
,
D.
, and
Han
,
S.
,
2015
, “
Simplification of Feature-Based 3D CAD Assembly Data of Ship and Offshore Equipment Using Quantitative Evaluation Metrics
,”
Comput.-Aided Des.
,
59
, pp.
140
154
.
2.
Kang
,
Y.
,
Kim
,
B. C.
,
Mun
,
D.
, and
Han
,
S.
,
2014
, “
Method to Simplify Ship Outfitting and Offshore Plant Equipment Three-Dimensional (3D) Computer-Aided Design (CAD) Data for Construction of an Equipment Catalog
,”
J. Mar. Sci. Technol.
,
19
(
2
), pp.
185
196
.
3.
Hoppe
,
H.
,
1996
, “
Progressive Meshes
,”
ACM SIGGRAPH
, pp.
99
108
.
4.
Sheffer
,
A.
,
2001
, “
Model Simplification for Meshing Using Face Clustering
,”
Comput.-Aided Des.
,
33
(
13
), pp.
925
934
.
5.
Veron
,
P.
, and
Leon
,
J. C.
,
1998
, “
Shape Preserving Polyhedral Simplification With Bounded Error
,”
Comput. Graphics
,
22
(
5
), pp.
565
585
.
6.
Foucault
,
G.
,
Cuilliere
,
J. C.
,
Francois
,
V.
,
Leon
,
J. C.
, and
Maranzana
,
R.
,
2008
, “
Adaptation of CAD Model Topology for Finite Element Analysis
,”
Comput.-Aided Des.
,
40
(
2
), pp.
176
196
.
7.
Koo
,
S. B.
, and
Lee
,
K. W.
,
2002
, “
Wrap-Around Operation to Make Multi-Resolution Model of Part and Assembly
,”
Comput. Graphics
,
26
(
5
), pp.
687
700
.
8.
Zhu
,
H.
, and
Menq
,
C. H.
,
2002
, “
B-Rep Model Simplification by Automatic Fillet/Round Suppressing for Efficient Automatic Feature Recognition
,”
Comput.-Aided Des.
,
34
(
2
), pp.
109
123
.
9.
Seo
,
J. H.
,
Song
,
Y. J.
,
Kim
,
S. C.
,
Lee
,
K. W.
,
Choi
,
Y.
, and
Chae
,
S. W.
,
2005
, “
Wrap-Around Operation for Multi-Resolution CAD Model
,”
Comput.-Aided Des. Appl.
,
2
(
1–4
), pp.
67
76
.
10.
Lee
,
S. H.
, and
Lee
,
K.
,
2012
, “
Simultaneous and Incremental Feature-Based Multiresolution Modeling With Feature Operations in Part Design
,”
Comput.-Aided Des.
,
44
(
5
), pp.
457
483
.
11.
Lee
,
J. Y.
,
Lee
,
J. H.
,
Kim
,
H.
, and
Kim
,
H. S.
,
2004
, “
A Cellular Topology-Based Approach to Generating Progressive Solid Models From Feature-Centric Models
,”
Comput.-Aided Des.
,
36
(
3
), pp.
217
229
.
12.
Lee
,
S. H.
,
2005
, “
A CAD-CAE Integration Approach Using Feature-Based Multiresolution and Multi-Abstraction Modelling Techniques
,”
Comput.-Aided Des.
,
37
(
9
), pp.
941
955
.
13.
Kanai
,
S.
,
Iyoda
,
D.
,
Endo
,
Y.
,
Sakamoto
,
H.
, and
Kanatani
,
N.
,
2012
, “
Appearance Preserving Simplification of 3D CAD Model With Large-Scale Assembly Structures
,”
Int. J. Interact. Des. Manuf.
,
6
(
3
), pp.
139
154
.
14.
Yu
,
J. F.
,
Xiao
,
H.
,
Zhang
,
J.
,
Cheng
,
H.
, and
Xin
,
B.
,
2013
, “
CAD Model Simplification for Assembly Field
,”
Int. J. Adv. Manuf. Technol.
,
68
(
10
), pp.
2335
2347
.
15.
16.
17.
caddoctor
,
2013
, “
Elysium
,” http://elysiuminc.com/products/caddoctor
18.
3D ACIS Modeling
,
2013
, “
Spatial
,” http://www.spatial.com/products/3d-acis-modeling
19.
Ma
,
L.
,
Huang
,
Z.
, and
Wang
,
Y.
,
2010
, “
Automatic Discovery of Common Design Structures in CAD Models
,”
Comput. Graphics
,
34
(
5
), pp.
545
555
.
20.
Cordella
,
L. P.
,
Foggia
,
P.
,
Sansone
,
C.
, and
Mento
,
M.
,
2000
, “
Fast Graph Matching for Detecting CAD Image Components
,”
15th International Conference on Pattern Recognition
, Barcelona, Spain, pp.
1034
1037
.
21.
Cordella
,
L. P.
,
Foggia
,
P.
,
Sansone
,
C.
, and
Mento
,
M.
,
2001
, “
An Improved Algorithm for Matching Large Graphs
,”
3rd IAPR-TC15 Workshop on Graph-Based Representations in Pattern Recognition
, pp.
149
159
.
22.
Ullmann
,
J. R.
,
1976
, “
An Algorithm for Subgraph Isomorphism
,”
J. ACM
,
23
(
1
), pp.
31
42
.
23.
Kim
,
I.
, and
Han
,
S.
,
2012
, “
Generation of Design History From B-Rep Models by Mapping and Sequencing of Design Features
,”
Adv. Sci. Lett.
,
10
(
1
), pp.
528
532
.
24.
Tarjan
,
R.
,
1972
, “
Depth First Search and Linear Graph Algorithms
,”
SIAM J. Comput.
,
1
(
2
), pp.
146
160
.
25.
Thakur
,
A.
,
Banerjee
,
A. G.
, and
Gupta
,
S. K.
,
2009
, “
A Survey of CAD Model Simplification Techniques for Physics-Based Simulation Applications
,”
Comput.-Aided Des.
,
41
(
2
), pp.
65
80
.
26.
Wang
,
M.
,
Lin
,
S. J.
, and
Lo
,
Y. C.
,
2010
, “
The Comparison Between MAUT and PROMETHEE
,”
Industrial Engineering and Engineering Management
, Macao, Dec. 7–10, pp.
753
757
.
27.
Mun
,
D.
, and
Ramani
,
K.
,
2011
, “
Knowledge-Based Part Similarity Measurement Utilizing Ontology and Multi-Criteria Decision Making Method
,”
Adv. Eng. Inf.
,
25
(
2
), pp.
119
130
.
28.
29.
The Boost Graph Library (BGL)
,
2013
, “
Indiana University
,” http://www.boost.org/doc/libs/1_54_0/libs/graph/doc
30.
Sun
,
G.
,
2007
, “
A Digital Mock-Up Visualization System Capable of Processing Giga-Scale CAD Models
,”
Comput.-Aided Des.
,
39
(
2
), pp.
133
141
.
31.
Forklifts and Warehouse Equipment by Hyundai Heavy Industry
,
2015
, “
Hyundai Heavy Industry
,” http://forklifts.hyundai.eu
You do not currently have access to this content.