Intrinsic flexibility of protein molecules enables them to change their 3D structure and perform their specific task. Therefore, identifying rigid regions and consequently flexible regions of proteins has a significant role in studying protein molecules' function. In this study, we developed a kinematic model of protein molecules considering all covalent and hydrogen bonds in protein structure. Then, we used this model and developed two independent rigidity analysis methods to calculate degrees of freedom (DOF) and identify flexible and rigid regions of the proteins. The first method searches for closed loops inside the protein structure and uses Grübler–Kutzbach (GK) criterion. The second method is based on a modified 3D pebble game. Both methods are implemented in a matlab program and the step by step algorithms for both are discussed. We applied both methods on simple 3D structures to verify the methods. Also, we applied them on several protein molecules. The results show that both methods are calculating the same DOF and rigid and flexible regions. The main difference between two methods is the run time. It's shown that the first method (GK approach) is slower than the second method. The second method takes 0.29 s per amino acid versus 0.83 s for the first method to perform this rigidity analysis.

References

References
1.
Gutteridge
,
A.
, and
Thornton
,
J.
,
2005
, “
Understanding Nature's Catalytic Toolkit
,”
Trends Biochem. Sci.
,
30
(
11
), pp.
622
629
.10.1016/j.tibs.2005.09.006
2.
Branden
,
C.
, and
Tooze
,
J.
,
1999
,
Introduction to Protein Structure
,
2nd ed.
,
Garland Publishing
, New York.
3.
Murray
,
R.
,
Harper
,
H.
,
Granner
,
D.
,
Mayes
,
P.
, and
Rodwell
,
V.
,
2006
,
Harper's Illustrated Biochemistry
,
McGraw-Hill
, Columbus, OH.
4.
Baker
,
E. N.
, and
Hubbard
,
R. E.
,
1984
, “
Hydrogen Bonding in Globular Proteins
,”
Prog. Biophys. Mol. Biol.
,
44
(
2
), pp.
97
179
.10.1016/0079-6107(84)90007-5
5.
Mcdonald
,
I. K.
, and
Thornton
,
J. M.
,
1994
, “
Satisfying Hydrogen-Bonding Potential in Proteins
,”
J. Mol. Biol.
,
238
(
5
), pp.
777
793
.10.1006/jmbi.1994.1334
6.
Kortemme
,
T.
,
Morozov
,
A. V.
, and
Baker
,
D.
,
2003
, “
An Orientation-Dependent Hydrogen Bonding Potential Improves Prediction of Specificity and Structure for Proteins and Protein-Protein Complexes
,”
J. Mol. Biol.
,
326
(
4
), pp.
1239
1259
.10.1016/S0022-2836(03)00021-4
7.
Xu
,
D.
,
Tsai
,
C. J.
, and
Nussinov
,
R.
,
1997
, “
Hydrogen Bonds and Salt Bridges Across Protein-Protein Interfaces
,”
Protein Eng.
,
10
(
9
), pp.
999
1012
.10.1093/protein/10.9.999
8.
Alexandrescu
,
A. T.
,
Snyder
,
D. R.
, and
Abildgaard
,
F.
,
2001
, “
NMR of Hydrogen Bonding in Cold-Shock Protein A and an Analysis of the Influence of Crystallographic Resolution on Comparisons of Hydrogen Bond Lengths
,”
Protein Sci.
,
10
(
9
), pp.
1856
1868
.10.1110/ps.14301
9.
Shahbazi
,
Z.
,
Ilies
,
H.
, and
Kazerounian
,
K.
,
2010
, “
Hydrogen Bonds and Kinematic Mobility of Protein Molecules
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
021009
.10.1115/1.4001088
10.
Van Holde
,
K.
, and
Mathews
,
C.
,
1996
,
Biochemistry
,
Benjamin-Cummings Pub. Co.
,
Menlo Park, CA
.
11.
Lodish
,
H.
,
Berk
,
A.
,
Matsudaira
,
P.
,
Kaiser
,
C.
,
Krieger
,
M.
,
Scott
,
M.
,
Zipurksy
,
S.
, and
Darnell
,
J.
,
2004
,
Molecular Cell Biology
,
5th ed.
,
WH Freeman and Company
, New York.
12.
Hinsen
,
K.
,
2008
, “
Structural Flexibility in Proteins: Impact of the Crystal Environment
,”
Bioinformatics
,
24
(
4
), pp.
521
528
.10.1093/bioinformatics/btm625
13.
Kumar
,
S.
,
Wolfson
,
H. J.
, and
Nussinov
,
R.
,
2001
, “
Protein Flexibility and Electrostatic Interactions
,”
IBM J. Res. Dev.
,
45
(
3–4
), pp.
499
512
.10.1147/rd.453.0499
14.
Najmanovich
,
R.
,
Kuttner
,
J.
,
Sobolev
,
V.
, and
Edelman
,
M.
,
2000
, “
Side-Chain Flexibility in Proteins Upon Ligand Binding
,”
Proteins-Struct. Funct. Genet.
,
39
(
3
), pp.
261
268
.10.1002/(SICI)1097-0134(20000515)39:3<261::AID-PROT90>3.0.CO;2-4
15.
Heal
,
J. W.
,
Jimenez-Roldan
,
J. E.
,
Wells
,
S. A.
,
Freedman
,
R. B.
, and
Römer
,
R. A.
,
2012
, “
Inhibition of HIV-1 Protease: The Rigidity Perspective
,”
Bioinformatics
,
28
(
3
), pp.
350
357
.10.1093/bioinformatics/btr683
16.
Nichols
,
W. L.
,
Rose
,
G. D.
,
Ten Eyck
,
L. F.
, and
Zimm
,
B. H.
,
1995
, “
Rigid Domains in Proteins: An Algorithmic Approach to Their Identification
,”
Proteins
,
23
(
1
), pp.
38
48
.10.1002/prot.340230106
17.
Wirggers
,
W.
, and
Schulten
,
K.
,
1997
, “
Protein Domain Movements: Detection of Rigid Domains and Visualization of Hinges in Comparisons of Atomic Coordinates
,”
Proteins
,
29
(
1
), pp.
1
14
.10.1002/(SICI)1097-0134(199709)29:1<1::AID-PROT1>3.0.CO;2-J
18.
Sinha
,
N.
, and
Smith-Gill
,
S.
,
2005
, “
Molecular Dynamics Simulation of a High-Affinity Antibody-Protein Complex
,”
Cell Biochem. Biophys.
,
43
(
2
), pp.
253
273
.10.1385/CBB:43:2:253
19.
Suhre
,
K.
, and
Sanejouand
,
Y. H.
,
2004
, “
ElNemo: A Normal Mode Web Server for Protein Movement Analysis and the Generation of Templates for Molecular Replacement
,”
Nucleic Acids Res.
,
32
(
Suppl. 2
), pp.
W610
W614
.10.1093/nar/gkh368
20.
Doruker
,
P.
,
Bahara
,
I.
,
Baysalb
,
C.
, and
Erman
,
B.
,
2002
, “
Collective Deformations in Proteins Determined by a Mode Analysis Molecular Dynamics Trajectories
,”
Polymer
,
43
(
2
), pp.
431
439
.10.1016/S0032-3861(01)00424-4
21.
Jacobs
,
D. J.
,
Rader
,
A. J.
,
Kuhn
,
L. A.
, and
Thorpe
,
M. F.
,
2001
, “
Protein Flexibility Predictions Using Graph Theory
,”
Proteins
,
44
(
2
), pp.
150
165
.10.1002/prot.1081
22.
Jacobs
,
D.
, and
Thorpe
,
M.
,
1995
, “
Generic Rigidity Percolation: The Pebble Game
,”
Phys. Rev. Lett.
,
75
(
22
), pp.
4051
4054
.10.1103/PhysRevLett.75.4051
23.
Lee
,
A.
,
Streinu
,
I.
, and
Theran
,
L.
,
2008
, “
Analyzing Rigidity With Pebble Games
,”
Proceedings of the 24th Annual Symposium on Computational Geometry
, pp.
226
227
.
24.
Lee
,
A.
, and
Streinu
,
I.
,
2005
, “
Pebble Game Algorithms and (k,l)- Sparse Graphs
,” 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), Stefan Felsner, ed., Discrete Mathematics and Theoretical Computer Science Proceedings AE, pp. 181–186.
25.
Karplus
,
P. A.
, and
Schulz
,
G. E.
,
1985
, “
Prediction of Chain Flexibility in Proteins
,”
Naturwissenschaften
,
72
(
4
), pp.
212
213
.10.1007/BF01195768
26.
Ragone
,
R.
,
Facchiano
,
F.
,
Facchiano
,
A.
,
Facchiano
,
A. M.
, and
Colonna
,
G.
,
1989
, “
Flexibility Plot of Proteins
,”
Protein Eng.
,
2
(
7
), pp.
497
504
.10.1093/protein/2.7.497
27.
Poursina
,
M.
,
2014
, “
Modified Fast Multipole Method for Coarse-Grained Molecular Simulations
,”
Biophys. J.
,
106
(
2
), p.
407a
.
28.
Kazerounian
,
K.
,
Latif
,
K.
, and
Alvarado
,
C.
,
2005
, “
Protofold: A Successive Kinetostatic Compliance Method for Protein Conformation Prediction
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
712
717
.10.1115/1.1867502
You do not currently have access to this content.