Studies of design cognition often face two challenges. One is a lack of formal cognitive models of design processes that have the appropriate granularity: fine enough to distinguish differences among individuals and coarse enough to detect patterns of similar actions. The other is the inadequacies in automating the recourse-intensive analyses of data collected from large samples of designers. To overcome these barriers, we have developed the problem map (P-maps) ontological framework. It can be used to explain design thinking through changes in state models that are represented in terms of requirements, functions, artifacts, behaviors, and issues. The different ways these entities can be combined, in addition to disjunctive relations and hierarchies, support detailed modeling and analysis of design problem formulation. A node–link representation of P-maps enables one to visualize how a designer formulates a problem or to compare how different designers formulate the same problem. Descriptive statistics and time series of entities provide more detailed comparisons. Answer set programming (ASP), a predicate logic formalism, is used to formalize and trace strategies that designers adopt. Data mining techniques (association rule and sequence mining) are used to search for patterns among large number of designers. Potential uses of P-maps are computer-assisted collection of large data sets for design research, development of a test for the problem formulation skill, and a tutoring system.

References

1.
Ericsson
,
K. A.
, and
Simon
,
H. A.
,
1992
,
Protocol Analysis: Verbal Reports as Data
,
MIT
,
Cambridge, MA
.
2.
Cross
,
N.
,
Dorst
,
K.
, and
Roozenburg
,
N.
,
1992
, “
Research in Design Thinking
,” Proceedings of a Workshop Meeting Held at the Faculty of Industrial Design Engineering
Delft University of Technology
,
The Netherlands
, May 29–31, 1991, Delft University Press, Delft, The Netherlands.
3.
Cross
,
N.
,
Christiaans
,
H.
, and
Dorst
,
K.
,
1996
,
Analysing Design Activity
,
Wiley
,
Chichester, UK
.
4.
Valkenburg
,
R.
, and
Dorst
,
K.
,
1998
, “
The Reflective Practice of Design Teams
,”
Des. Stud.
,
19
(
3
), pp.
249
271
.10.1016/S0142-694X(98)00011-8
5.
Coyne
,
R.
,
2005
, “
Wicked Problems Revisited
,”
Des. Stud.
,
26
(
1
), pp.
5
17
.10.1016/j.destud.2004.06.005
6.
Dorst
,
K.
, and
Cross
,
N.
,
2001
, “
Creativity in the Design Process: Co-Evolution of Problem–Solution
,”
Des. Stud.
,
22
(
5
), pp.
425
437
.10.1016/S0142-694X(01)00009-6
7.
Maclellan
,
C. J.
,
Langley
,
P.
,
Shah
,
J. J.
, and
Dinar
,
M.
,
2013
, “
A Computational Aid for Problem Formulation in Early Conceptual Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
3
), p.
031005
.10.1115/1.4024714
8.
Thomas
,
J. C.
, and
Carroll
,
J. M.
,
1979
, “
The Psychological Study of Design
,”
Des. Stud.
,
1
(
1
), pp.
5
11
.10.1016/0142-694X(79)90020-6
9.
Cross
,
N.
, and
Cross
,
A. C.
,
1998
, “
Expertise in Engineering Design
,”
Res. Eng. Des.
,
10
(
3
), pp.
141
149
.10.1007/BF01607156
10.
Atman
,
C. J.
,
Chimka
,
J. R.
,
Bursic
,
K. M.
, and
Nachtmann
,
H. L.
,
1999
, “
A Comparison of Freshman and Senior Engineering Design Processes
,”
Des. Stud.
,
20
(
2
), pp.
131
152
.10.1016/S0142-694X(98)00031-3
11.
Eisentraut
,
R.
,
1999
, “
Styles of Problem Solving and Their Influence on the Design Process
,”
Des. Stud.
,
20
(
5
), pp.
431
437
.10.1016/S0142-694X(99)00016-2
12.
Harfield
,
S.
,
2007
, “
On Design ‘Problematization’: Theorising Differences in Designed Outcomes
,”
Des. Stud.
,
28
(
2
), pp.
159
173
.10.1016/j.destud.2006.11.005
13.
Ball
,
L. J.
,
Ormerod
,
T. C.
, and
Morley
,
N. J.
,
2004
, “
Spontaneous Analogising in Engineering Design: A Comparative Analysis of Experts and Novices
,”
Des. Stud.
,
25
(
5
), pp.
495
508
.10.1016/j.destud.2004.05.004
14.
Ho
,
C.
,
2001
, “
Some Phenomena of Problem Decomposition Strategy for Design Thinking: Differences Between Novices and Experts
,”
Des. Stud.
,
22
(
1
), pp.
27
45
.10.1016/S0142-694X(99)00030-7
15.
Kruger
,
C.
, and
Cross
,
N.
,
2006
, “
Solution Driven Versus Problem Driven Design: Strategies and Outcomes
,”
Des. Stud.
,
27
(
5
), pp.
527
548
.10.1016/j.destud.2006.01.001
16.
Gero
,
J. S.
, and
Mc Neill
,
T.
,
1998
, “
An Approach to the Analysis of Design Protocols
,”
Des. Stud.
,
19
(
1
), pp.
21
61
.10.1016/S0142-694X(97)00015-X
17.
Pahl
,
G.
, and
Beitz
,
W.
,
1996
,
Engineering Design: A Systematic Approach
,
Springer
,
London
.
18.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.10.1007/s00163-001-0008-3
19.
Maher
,
M. L.
,
Poon
,
J.
, and
Boulanger
,
S.
,
1996
, “
Formalising Design Exploration as Co-Evolution: A Combined Gene Approach
,”
Advances in Formal Design Methods for CAD: Proceedings of the IFIP WG5.2 Workshop on Formal Design Methods for Computer-Aided Design
,
J. S.
Gero
, and
F.
Sudweeks
, eds., June,
Springer
, pp.
3
30
.
20.
Goldschmidt
,
G.
,
1997
, “
Capturing Indeterminism: Representation in the Design Problem Space
,”
Des. Stud.
,
18
(
4
), pp.
441
455
.10.1016/S0142-694X(97)00011-2
21.
Goldschmidt
,
G.
, and
Tatsa
,
D.
,
2005
, “
How Good are Good Ideas? Correlates of Design Creativity
,”
Des. Stud.
,
26
(
6
), pp.
593
611
.10.1016/j.destud.2005.02.004
22.
Goel
,
V.
, and
Pirolli
,
P.
,
1992
, “
The Structure of Design Problem Spaces
,”
Cogn. Sci.
,
16
(
3
), pp.
395
429
.10.1207/s15516709cog1603_3
23.
Newell
,
A.
, and
Simon
,
H. A.
,
1972
,
Human Problem Solving
,
Prentice-Hall
,
Upper Saddle River, NJ
.
24.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
11
(
4
), pp.
26
36
.10.1609/aimag.v11i4.854
25.
Pourmohamadi
,
M.
, and
Gero
,
J. S.
,
2011
, “
LINKOgrapher: An Analysis Tool to Study Design Protocols Based on FBS Coding
,”
International Conference on Engineering Design
,
Copenhagen, Denmark
, pp.
1
10
.
26.
Anthony
,
L.
,
Regli
,
W. C.
,
John
,
J. E.
, and
Lombeyda
,
S. V.
,
2001
, “
An Approach to Capturing Structure, Behavior, and Function of Artifacts in Computer-Aided Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
2
), pp.
186
192
.10.1115/1.1385826
27.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2004
, “
The Situated Function-Behaviour-Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.10.1016/j.destud.2003.10.010
28.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2007
, “
Locating Creativity in a Framework of Designing for Innovation
,”
Trends in Computer Aided Innovation
,
N.
León-Rovira
, ed.,
Springer
,
Boston
, pp.
57
66
.10.1007/978-0-387-75456-7_6
29.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
23
(
1
), pp.
23
35
.10.1017/S0890060409000080
30.
Wölkl
,
S.
, and
Shea
,
K.
,
2009
, “
A Computational Product Model for Conceptual Design Using SysML
,”
ASME
Paper No. DETC2009-87239.10.1115/DETC2009-87239
31.
Boden
,
M. A.
,
2004
,
The Creative Mind: Myths and Mechanisms
,
Routledge
,
London/New York
.
32.
Novak
,
J. D.
, and
Gowin
,
D. B.
,
1984
,
Learning How to Learn
,
Cambridge University
,
New York
.10.1017/CBO9781139173469
33.
Novak
,
J. D.
, and
Cañas
,
A. J.
,
2008
, “
The Theory Underlying Concept Maps and How to Construct and Use Them
,” Florida Institute for Human and Machine Cognition, Technical Report IHMC CmapTools 2006-01 Rev 01-2008.
34.
Quillian
,
R.
,
1966
, “
Semantic Memory
,” Ph.D. thesis, Carnegie Institute of Technology, Pittsburgh, PA.
35.
Lehmann
,
F.
,
1992
, “
Semantic Networks
,”
Comput. Math. Appl.
,
23
(
2–5
), pp.
1
50
.10.1016/0898-1221(92)90135-5
36.
Dinar
,
M.
,
Shah
,
J. J.
,
Langley
,
P.
,
Campana
,
E.
, and
Hunt
,
G. R.
,
2011
, “
Towards a Formal Representation Model of Problem Formulation in Design
,”
ASME
Paper No. DETC2011-48396.10.1115/DETC2011-48396
37.
Danielescu
,
A.
,
Dinar
,
M.
,
Maclellan
,
C. J.
,
Shah
,
J. J.
, and
Langley
,
P.
,
2012
, “
The Structure of Creative Design: What Problem Maps Can Tell us About Problem Formulation and Creative Designers
,”
ASME
Paper No. DETC2012-70325.10.1115/DETC2012-70325
38.
Gelfond
,
M.
,
2008
, “
Answer Sets
,”
Handbook of Knowledge Representation
,
F.
van Harmelen
,
V.
Lifschitz
,
B.
Porter
, eds.,
Elsevier
,
Oxford, UK
, pp.
285
316
.
39.
Ward
,
T. B.
,
Patterson
,
M. J.
, and
Sifonis
,
C. M.
,
2004
, “
The Role of Specificity and Abstraction in Creative Idea Generation
,”
Creat. Res. J.
,
16
(
1
), pp.
1
9
.10.1207/s15326934crj1601_1
40.
Tan
,
P.-N.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2005
,
Introduction to Data Mining
,
Pearson Addison Wesley
,
Boston
.
41.
Shah
,
J. J.
,
Millsap
,
R. E.
,
Woodward
,
J.
, and
Smith
,
S. M.
,
2012
, “
Applied Tests of Design Skills—Part 1: Divergent Thinking
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021005
.10.1115/1.4005594
42.
Vanlehn
,
K.
,
2006
, “
The Behavior of Tutoring Systems
,”
Int. J. Artif. Intell. Educ.
,
16
(
3
), pp.
227
265
.
43.
Cohen
,
J.
,
1960
, “
A Coefficient of Agreement for Nominal Scales
,”
Educ. Psychol. Meas.
,
20
(
1
), pp.
37
46
.10.1177/001316446002000104
44.
Fleiss
,
J. L.
,
1971
, “
Measuring Nominal Scale Agreement Among Many Raters
,”
Psychol. Bull.
,
76
(
5
), pp.
378
382
.10.1037/h0031619
45.
Gwet
,
K. L.
,
2008
, “
Variance Estimation of Nominal-Scale Inter-Rater Reliability With Random Selection of Raters
,”
Psychometrika
,
73
(
3
), pp.
407
430
.10.1007/s11336-007-9054-8
46.
Landis
,
J. R.
, and
Koch
,
G. G.
,
1977
, “
The Measurement of Observer Agreement for Categorical Data
,”
Biometrics
,
33
(
1
), pp.
159
174
.10.2307/2529310
47.
Fleiss
,
J. L.
,
Levin
,
B.
, and
Paik
,
M. C.
,
2003
,
Statistical Methods for Rates and Proportions
, 3rd ed.,
Wiley
, Hoboken, NJ.10.1002/0471445428
You do not currently have access to this content.