The goal of this research is to develop a method and tool (a) to estimate disassembly time automatically from early embodiment design based CAD model and (b) to provide design suggestions to improve product disassemblability. Disassembly is a critical process in the end-of-life (EOL) stage of a product. It is usually followed by sorting and then by material recovery for recycling or part recovery for reuse or remanufacturing. Manual estimation of disassembly time, through physical prototype disassembly or through Boothroyd and Dewhurst system, is time consuming and is not applicable in the early design stage. In this research, graph based data structures and related metrics are utilized to estimate complete and selective disassembly time at embodiment design stage. Selective disassembly is important when a single part of subassembly is to be recovered while the rest of the product is to be discarded. Selective disassembly time is estimated by merging particular nodes in assembly and bipartite graph and then recomputing the graph metrics. The method and algorithm presented in this paper is implemented using SolidWorks application programming interface (API) in Visual C#. Results are compared with the results obtained by Boothroyd and Dewhurst method, the error range is reasonable.

References

References
1.
Wikipedia,
2013
, “
End-Of-Life (Product)
,” http://en.wikipedia.org/wiki/End-of-life (product)
2.
Fleischmann
,
M.
,
Bloemhof-Ruwaard
,
J. M.
,
Dekker
,
R.
,
van der Laana
,
E.
,
van Nunena
,
J. A. E. E.
, and
Van Wassenhovec
,
L. N.
,
1997
, “
Quantitative Models for Reverse Logistics: A Review
,”
J. Eur. J. Oper. Res.
,
103
(
1
), pp.
1
17
.10.1016/S0377-2217(97)00230-0
3.
Thierry
,
M. C.
,
Salomon
,
M.
,
Nunen
,
J.
, and
Van Wassenhovec
,
L.
,
1995
, “
Strategic Issues in Product Recovery Management
,”
J. Calif. Manage. Rev.
,
37
(
2
), pp.
114
135
.10.2307/41165792
4.
Gungor
,
A.
, and
Gupta
,
S. M.
,
1999
, “
Issues in Environmentally Conscious Manufacturing and Product Recovery: A Survey
,”
J. Comput. Ind. Eng.
,
36
(
4
), pp.
811
853
.10.1016/S0360-8352(99)00167-9
5.
Guide
,
V. D. R.
,
2000
, “
Production Planning and Control for Remanufacturing: Industry Practice and Research Needs
,”
J. Oper. Manag.
,
18
(
4
), pp.
467
483
.10.1016/S0272-6963(00)00034-6
6.
Lund
,
R.
,
1996
, “
The Remanufacturing Industry: Hidden Giant
,” Boston University, Boston, MA.
7.
Hatcher
,
G. D.
,
Ijomah
,
W. L.
, and
Windmill
,
J. F.
,
2013
, “
Design for Remanufacturing in China: A Case Study of Electrical and Electronic Equipment
,”
J. Remanuf.
,
3
(
1
), pp.
3
11
. 10.1186/2210-4690-3-3
8.
Matsumoto
,
M.
, and
Umeda
,
Y.
,
2011
, “
An Analysis of Remanufacturing Practices in Japan
,”
J. Remanuf.
,
1
(
1
), pp.
2
11
. 10.1186/2210-4690-1-2
9.
Gungor
,
A.
, and
Gupta
,
S. M.
,
1998
, “
Disassembly Sequence Planning for Products With Defective Parts in Product Recovery
,”
J. Comput. Ind. Eng.
,
35
(
1
), pp.
161
164
.10.1016/S0360-8352(98)00047-3
10.
Navin-Chandra
,
D.
,
1994
, “
The Recovery Problem in Product Design
,”
J. Eng. Des.
,
5
(
1
), pp.
65
86
.10.1080/09544829408907873
11.
DeRon
,
A.
, and
Penev
,
K.
,
1995
, “
Disassembly and Recycling of Electronic Consumer Products: An Overview
,”
J. Technovation.
,
15
(
6
), pp.
363
374
.10.1016/0166-4972(95)96597-M
12.
Penev
,
K. D.
, and
deRon
,
A. J.
,
1996
, “
Determination of a Disassembly Strategy
,”
J. Int. J. Prod. Res.
,
34
(
2
), pp.
495
506
.10.1080/00207549608904915
13.
Gupta
,
S. K.
,
Regli
,
W. C.
,
Das
,
D.
, and
Nau
,
D. S.
,
1997
, “
Automated Manufacturability Analysis: A Survey
,”
J. Res. Eng. Des.
,
9
(
3
), pp.
168
190
.10.1007/BF01596601
14.
Moore
,
K. E.
,
Gungor
,
A.
, and
Gupta
,
S. M.
,
1998
, “
A Petri Net Approach to Disassembly Process Planning
,”
J. Comput. Ind. Eng.
,
35
(
1
), pp.
165
168
.10.1016/S0360-8352(98)00051-5
15.
Kwak
,
M. J.
,
Hong
,
Y. S.
, and
Cho
,
N. W.
,
2009
, “
Eco-Architecture Analysis for End-Of-Life Decision Making
,”
J. Int. Prod. Res.
,
47
(
22
), pp.
6233
6259
.10.1080/00207540802175329
16.
Kara
,
S.
,
Pornprasitpol
,
P.
, and
Kaebernick
,
H.
,
2005
, “
A Selective Disassembly Methodology for End-Of-Life Products
,”
J. Assembly Autom.
,
25
(
2
), pp.
124
134
. 10.1108/01445150510590488
17.
Behdad
,
S.
,
Kwak
,
M.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Simultaneous Selective Disassembly and End-Of-Life Decision Making for Multiple Products That Share Disassembly Operations
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041002
.10.1115/1.4001207
18.
Yi
,
J.
,
Yu
,
B.
,
Du
,
L.
,
Li
,
C.
, and
Hu
,
D.
,
2008
, “
Research on the Selectable Disassembly Strategy of Mechanical Parts Based on the Generalized CAD Model
,”
Int. J. Adv. Manuf. Technol.
,
37
(
5–6
), pp.
599
604
.10.1007/s00170-007-0990-3
19.
Merdan
,
M.
,
Lepuschitz
,
W.
, and
Meurer
,
T.
,
2010
, “
Towards Ontology-Based Automated Disassembly Systems
,”
36th Annual Conference on
IEEE
Industrial Electronics Society, Glendale, AZ, Nov. 7–10, pp.
1392
1397
10.1109/IECON.2010.5675479.
20.
Basdere
,
B.
, and
Seliger
,
G.
,
2003
, “
Disassembly Factories for Electrical and Electronic Products to Recover Resources in Product and Material Cycles
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
5354
5362
.10.1021/es034555g
21.
Tang
,
Y.
,
Zhou
,
M.
,
Zussman
,
E.
, and
Caudill
,
R.
,
2000
, “
Disassembly Modeling, Planning and Application: A Review
,”
IEEE
International Conference on Robotics and Automation
, San Francisco, CA, Vol.
3
, pp.
2197
2202
10.1109/ROBOT.2000.846354.
22.
Zhang
,
H. C.
, and
Kuo
,
T. C.
,
1997
, “
A Graph-Based Disassembly Sequence Planning for EOL Product Recycling
,” Twenty-First
IEEE/CPMT
International Electronics Manufacturing Technology Symposium
, Austin, TX, Oct. 13–15, pp.
140
151
10.1109/IEMT.1997.626890.
23.
Zhang
,
H. C.
, and
Kuo
,
T. C.
,
1996
, “
A Graph-Based Approach to Disassembly Model for End-Of-Life Product Recycling
,” Nineteenth
IEEE/CPMT
Electronics Manufacturing Technology Symposium
, Austin, TX, Oct. 14–16, pp.
247
254
10.1109/IEMT.1996.559739.
24.
Homem de Mello
,
L. S.
, and
Sanderson
,
A. C.
,
1990
, “
AND/OR Graph Representation of Assembly Plans
,”
IEEE Trans. Rob. Autom.
,
6
(
2
), pp.
188
199
.10.1109/70.54734
25.
Homem de Mello
,
L. S.
, and
Sanderson
,
A. C.
,
1991
, “
A Correct and Complete Algorithm for the Generation of Mechanical Assembly Sequences
,”
IEEE Trans. Rob. Autom.
,
7
(
2
), pp.
228
240
.10.1109/70.75905
26.
Reddy
,
V. N.
,
Mavrovouniotis
,
M. L.
, and
Liebman
,
M. N.
,
1993
, “
Petri Net Representations in Metabolic Pathways
,”
Proc. Int. Conf. Intell. Syst. Mol. Biol.
,
93
, pp.
328
336
.
27.
Suzuki
,
T.
,
Kanehara
,
T.
,
Inaba
,
A.
, and
Okuma
,
S.
,
1993
, “
On Algebraic and Graph Structural Properties of Assembly Petri Net
,”
IEEE
International Conference on Robotics and Automation, Atlanta, GA, May 2–6, pp.
507
514
10.1109/ROBOT.1993.291907.
28.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2010
, “
Product Design for Manufacture and Assembly
, 3rd ed., Vol.
74
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
29.
Boothroyd
,
G.
, and
Alting
,
L.
,
1992
, “
Design for Assembly and Disassembly
,”
J. CIRP Ann. Manuf. Technol.
,
41
(
2
), pp.
625
636
.10.1016/S0007-8506(07)63249-1
30.
Mathieson
,
J. L.
,
Wallace
,
B. A.
, and
Summers
,
J. D.
,
2012
, “
Assembly Time Modelling Through Connective Complexity Metrics
,”
Int. J. Comput. Integr. Manuf.
,
26
(
10
), pp.
955
967
. 10.1080/0951192X.2012.684706
31.
Summers
,
J. D.
, and
Shah
,
J. J.
,
2010
, “
Mechanical Engineering Design Complexity Metrics: Size, Coupling, and Solvability
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021004
.10.1115/1.4000759
32.
Mathieson
,
J. L.
, and
Summers
,
J. D.
,
2010
, “
Complexity Metrics for Directional Node-Link System Representations: Theory and Applications
,”
ASME
Paper No. DETC2010-2856110.1115/DETC2010-28561.
33.
Desai
,
A.
, and
Mital
,
A.
,
2003
, “
Evaluation of Disassemblability to Enable Design for Disassembly in Mass Production
,”
Int. J. Ind. Ergonom.
,
32
(
4
), pp.
265
281
.10.1016/S0169-8141(03)00067-2
34.
Kroll
,
E.
,
Beardsley
,
B.
, and
Parulian
,
A.
,
1996
, “
A Methodology to Evaluate Ease of Disassembly for Product Recycling
,”
IIE Trans.
,
28
(
10
), pp.
837
845
.
35.
Kara
,
S.
,
Pornprasitpol
,
P.
, and
Kaebernick
,
H.
,
2006
, “
Selective Disassembly Sequencing: A Methodology for the Disassembly of End-Of-Life Products
,”
J. CIRP Ann. Manuf. Technol.
,
55
(
1
), pp.
37
40
.10.1016/S0007-8506(07)60361-8
36.
Smith
,
S. S.
, and
Chen
,
W.-H.
,
2011
, “
Rule-Based Recursive Selective Disassembly Sequence Planning for Green Design
,”
J. Adv. Eng. Inf.
,
25
(
1
), pp.
77
87
.10.1016/j.aei.2010.03.002
37.
Smith
,
S.
,
Greg
,
S.
, and
Chen
,
W.-H.
,
2012
, “
Disassembly Sequence Structure Graphs: An Optimal Approach for Multiple-Target Selective Disassembly Sequence Planning
,”
J. Adv. Eng. Inf.
,
26
(
2
), pp.
306
316
.10.1016/j.aei.2011.11.003
38.
Sedgewick
,
R.
,
2002
,
Algorithms in C++, Part 1–4, Fundamentals Data Structures Sorting Searching
, 3rd ed.,
Addison-Wesley Professional
,
Boston, MA
.
39.
Lambert
,
A. J.
,
2003
, “
Disassembly Sequencing: A Survey
,”
J. Int. J. Prod. Res.
,
41
(
16
), pp.
3721
3759
.10.1080/0020754031000120078
40.
Zussman
,
E.
, and
Zhou
,
M.
,
1999
, “
A Methodology for Modeling and Adaptive Planning of Disassembly Processes
,”
IEEE Trans. Rob. Autom.
,
15
(
1
), pp.
190
194
.10.1109/70.744614
41.
Tiwari
,
M. K.
,
Sinha
,
N.
,
Kumar
,
S.
,
Rai
,
R.
, and
Mukhopadhyay
,
S. K.
,
2002
, “
A Petri Net Based Approach to Determine the Disassembly Strategy of a Product
,”
Int. J. Prod. Res.
,
40
(
5
), pp.
1113
1129
.10.1080/00207540110097176
42.
Cao
,
T.
, and
Sanderson
,
A. C.
,
1998
, “
AND/OR Net Representation for Robotic Task Sequence Planning
,”
IEEE Trans. Syst. Man Cybernet., Part C
,
28
(
2
), pp.
204
218
.10.1109/5326.669552
43.
Saitou
,
K.
,
2011
, “
Built to be Reclaimed
,”
Mech. Eng.
,
133
(
9
), pp.
52
54
.
44.
Newman
,
M. E. J.
,
2010
,
Networks: An Introduction
, 1st ed.,
Oxford University Press
,
New York
.
45.
Gross
,
J. L.
, and
Yellen
,
J.
,
2005
,
Graph Theory and Its Applications
,
CRC Press
,
Boca Raton, FL
.
46.
Mathieson
,
J.
, and
Summers
,
J.
,
2009
, “
Relational DSMs in Connectivity Complexity Measurement
,”
11th International DSM Conference
, pp.
15
26
.
47.
Pramanick
,
I.
, and
Ali
,
H.
,
1994
, “
Analysis and Experiments for a Parallel Solution to the all Pairs Shortest Path Problem
,”
IEEE
International Symposium on Circuits and Systems
, London, May 30–June 2, Vol.
1
, pp.
479
482
10.1109/ISCAS.1994.408842.
48.
49.
Whitney
,
D. E.
,
2004
,
Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development
,
Oxford University Press
,
New York
.
You do not currently have access to this content.