Some of the challenges that designers face in getting broad external input from customers during and after product launch include geographic limitations and the need for physical interaction with the design artifact(s). Having to conduct such user-based studies would require huge amounts of time and financial resources. In the past decade, social media has emerged as an increasingly important medium of communication and information sharing. Being able to mine and harness product-relevant knowledge within such a massive, readily accessible collection of data would give designers an alternative way to learn customers' preferences in a timely and cost-effective manner. In this paper, we propose a data mining driven methodology that identifies product features and associated customer opinions favorably received in the market space which can then be integrated into the design of next generation products. Two unique product domains (smartphones and automobiles) are investigated to validate the proposed methodology and establish social media data as a viable source of large scale, heterogeneous data relevant to next generation product design and development. We demonstrate in our case studies that incorporating suggested features into next generation products can result in favorable sentiment from social media users.

References

References
1.
Zhang
,
K.
,
Narayanan
,
R.
, and
Choudhary
,
A.
,
2010
, “
Voice of the Customers: Mining Online Customer Reviews for Product Feature-Based Ranking
,”
3rd Conference on Online Social Networks
,
USENIX Association
.
2.
Richins
,
M. L.
,
1983
, “
Negative Word-of-Mouth by Dissatisfied Consumers: A Pilot Study
,”
J. Mark.
,
47
(
1
), pp.
68
78
.10.2307/3203428
3.
Tietz
,
R.
,
Morrison
,
P. D.
,
Luthje
,
C.
, and
Herstatt
,
C.
,
2005
, “
The Process of User-Innovation: A Case Study in a Consumer Goods Setting
,”
Int. J. Prod. Dev.
,
2
(
4
), pp.
321
338
.10.1504/IJPD.2005.008005
4.
Luthje
,
C.
,
2004
, “
Characteristics of Innovating Users in a Consumer Goods Field: An Empirical Study of Sport-Related Product Consumers
,”
Technovation
,
24
(
9
), pp.
683
695
.10.1016/S0166-4972(02)00150-5
5.
Franke
,
N.
,
Von Hippel
,
E.
, and
Schreier
,
M.
,
2006
, “
Finding Commercially Attractive User Innovations: A Test of Lead-User Theory
,”
J. Prod. Innovation Manage.
,
23
(
4
), pp.
301
315
.10.1111/j.1540-5885.2006.00203.x
6.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2014
, “
Discovering Next Generation Product Innovations by Identifying Lead User Preferences Expressed Through Large Scale Social Media Data
,”
ASME
Paper No. DETC2014-34767.10.1115/DETC2014-34767
7.
Wu
,
X.
,
Zhu
,
X.
,
Wu
,
G.-Q.
, and
Ding
,
W.
,
2014
, “
Data Mining With Big Data
,”
IEEE Trans. Knowl. Data Eng.
,
26
(
1
), pp.
97
107
.10.1109/TKDE.2013.109
8.
Bodnar
,
T.
,
Tucker
,
C.
,
Hopkinson
,
K.
, and
Bilén
,
S.
,
2014
, “
Increasing the Veracity of Event Detection on Social Media Networks Through User Trust Modeling
,” 2014
IEEE
International Conference on Big Data
, Washington, DC, Oct. 27–30, pp. 636–643.10.1109/BigData.2014.7004286
9.
IBM
,
2013
, “
What Is Big Data?—Bringing Big Data to the Enterprise
,” Available at http://www-01.ibm.com/software/ph/data/bigdata/ [Accessed Aug. 16, 2013].
10.
Sakaki
,
T.
,
Okazaki
,
M.
, and
Matsuo
,
Y.
,
2010
, “
Earthquake Shakes Twitter Users: Real-Time Event Detection by Social Sensors
,”
19th International Conference on World Wide Web
,
WWW’10
, Raleigh, NC, Apr. 26–30, pp.
851
860
.10.1145/1772690.1772777
11.
Caragea
,
C.
,
McNeese
,
N.
,
Jaiswal
,
A.
,
Traylor
,
G.
,
Kim
,
H.
,
Mitra
,
P.
,
Wu
,
D.
,
Tapia
,
A.
,
Giles
,
L.
,
Jansen
,
B.
, and
Yen
,
J.
,
2011
, “
Classifying Text Messages for the Haiti Earthquake
,”
8th International Conference on Information Systems for Crisis Response and Management (ISCRAM2011)
, pp.
1
10
.
12.
Collier
,
N.
, and
Doan
,
S.
,
2012
, “
Syndromic Classification of Twitter Messages
,”
Electronic Healthcare
,
P.
Kostkova
,
M.
Szomszor
, and
D.
Fowler
, eds., Vol.
91
,
Springer
,
Berlin, Germany
, pp.
186
195
.10.1007/978-3-642-29262-0_27
13.
Bollen
,
J.
,
Mao
,
H.
, and
Zeng
,
X.
,
2011
, “
Twitter Mood Predicts the Stock Market
,”
J. Comput. Sci.
,
2
(
1
), pp.
1
8
.10.1016/j.jocs.2010.12.007
14.
Esparza
,
S. G.
,
O'Mahony
,
M. P.
, and
Smyth
,
B.
,
2012
, “
Mining the Real-Time Web: A Novel Approach to Product Recommendation
,”
Knowl. Based Syst.
,
29
, pp.
3
11
.10.1016/j.knosys.2011.07.007
15.
Tucker
,
C.
, and
Kim
,
H.
,
2011
, “
Trend Mining for Predictive Product Design
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111008
.10.1115/1.4004987
16.
Kaplan
,
A. M.
, and
Haenlein
,
M.
,
2010
, “
Users of the World, Unite! The Challenges and Opportunities of Social Media
,”
Bus. Horiz.
,
53
(
1
), pp.
59
68
.10.1016/j.bushor.2009.09.003
17.
Fei
,
G.
,
Mukherjee
,
A.
,
Liu
,
B.
,
Hsu
,
M.
,
Castellanos
,
M.
, and
Ghosh
,
R.
,
2013
, “
Exploiting Burstiness in Reviews for Review Spammer Detection
,”
Seventh International AAAI Conference on Weblogs and Social Media
, pp.
175
184
.
18.
Chevalier
,
J. A.
, and
Mayzlin
,
D.
,
2006
, “
The Effect of Word of Mouth on Sales: Online Book Reviews
,”
J. Mark. Res.
,
43
(
3
), pp.
345
354
.10.1509/jmkr.43.3.345
19.
Kietzmann
,
J. H.
,
Hermkens
,
K.
,
McCarthy
,
I. P.
, and
Silvestre
,
B. S.
,
2011
, “
Social Media? Get Serious! Understanding the Functional Building Blocks of Social Media
,”
Bus. Horiz.
,
54
(
3
), pp.
241
251
.10.1016/j.bushor.2011.01.005
20.
Himelboim
,
I.
,
McCreery
,
S.
, and
Smith
,
M.
,
2013
, “
Birds of a Feather Tweet Together: Integrating Network and Content Analyses to Examine Cross-Ideology Exposure on Twitter
,”
J. Comput. Mediated Commun.
,
18
(
2
), pp.
40
60
.10.1111/jcc4.12001
21.
Dellarocas
,
C.
,
2003
, “
The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms
,”
Manage. Sci.
,
49
(
10
), pp.
1407
1424
.10.1287/mnsc.49.10.1407.17308
22.
Fuge
,
M.
,
Tee
,
K.
,
Agogino
,
A.
, and
Maton
,
N.
,
2014
, “
Analysis of Collaborative Design Networks: A Case Study of Openideo
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
2
), p.
021009
.10.1115/1.4026510
23.
Yassine
,
A. A.
, and
Bradley
,
J. A.
,
2013
, “
A Knowledge-Driven, Network-Based Computational Framework for Product Development Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
1
), p.
011005
.10.1115/1.4023166
24.
Liu
,
Y.
,
Liang
,
Y.
,
Kwong
,
C. K.
, and
Lee
,
W. B.
,
2010
, “
A New Design Rationale Representation Model for Rationale Mining
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031009
.10.1115/1.3470018
25.
Lim
,
S. C. J.
,
Liu
,
Y.
, and
Loh
,
H. T.
,
2012
, “
An Exploratory Study of Ontology-Based Platform Analysis Under User Preference Uncertainty
,”
ASME
Paper No. DETC2012-70756.10.1115/DETC2012-70756
26.
Tucker
,
C. S.
, and
Kim
,
H. M.
,
2009
, “
Data-Driven Decision Tree Classification for Product Portfolio Design Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
041004
.10.1115/1.3243634
27.
Tucker
,
C.
, and
Kim
,
H.
,
2011
, “
Predicting Emerging Product Design Trend by Mining Publicly Available Customer Review Data
,”
18th International Conference on Engineering Design (ICED11)
, Vol.
6
, pp.
43
52
.
28.
Ghani
,
R.
,
Probst
,
K.
,
Liu
,
Y.
,
Krema
,
M.
, and
Fano
,
A.
,
2006
, “
Text Mining for Product Attribute Extraction
,”
SIGKDD Explor. Newsl.
,
8
(
1
), pp.
41
48
.10.1145/1147234.1147241
29.
Putthividhya
,
D. P.
, and
Hu
,
J.
,
2011
, “
Bootstrapped Named Entity Recognition for Product Attribute Extraction
,”
Conference on Empirical Methods in Natural Language Processing
, EMNLP’11, Stroudsburg, PA, pp.
1557
1567
.
30.
Popescu
,
A.-M.
, and
Etzioni
,
O.
,
2005
, “
Extracting Product Features and Opinions From Reviews
,”
Conference on Human Language Technology and Empirical Methods in Natural Language Processing
,
HLT’05
, Stroudsburg, PA, pp.
339
346
.10.3115/1220575.1220618
31.
Tuarob
,
S.
,
Tucker
,
C. S.
,
Salathe
,
M.
, and
Ram
,
N.
,
2014
, “
An Ensemble Heterogeneous Classification Methodology for Discovering Health-Related Knowledge in Social Media Messages
,”
J. Biomed. Inform.
,
49
, pp.
255
268
.10.1016/j.jbi.2014.03.005
32.
Asur
,
S.
, and
Huberman
,
B. A.
,
2010
, “
Predicting the Future With Social Media
,” 2010
IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology
, WI-IAT’10, Vol. 1, Toronto, ON, Aug. 31–Sept. 3, pp.
492
499
.10.1109/WI-IAT.2010.63
33.
Wang
,
L.
,
Youn
,
B.
,
Azarm
,
S.
, and
Kannan
,
P.
,
2011
, “
Customer-Driven Product Design Selection Using Web Based User-Generated Content
,”
ASME
Paper No. DETC2011-48338.10.1115/DETC2011-48338
34.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2013
, “
Fad or Here to Stay: Predicting Product Market Adoption and Longevity Using Large Scale, Social Media Data
,”
ASME
Paper No. DETC2013-12661.10.1115/DETC2013-12661
35.
Thelwall
,
M.
,
Buckley
,
K.
,
Paltoglou
,
G.
,
Cai
,
D.
, and
Kappas
,
A.
,
2010
, “
Sentiment in Short Strength Detection Informal Text
,”
J. Am. Soc. Inf. Sci. Technol.
,
61
(
12
), pp.
2544
2558
.10.1002/asi.21416
36.
Fox
,
E.
,
2008
,
Emotion Science: Cognitive and Neuroscientific Approaches to Understanding Human Emotions
,
Palgrave Macmillan
, Basingstoke, New York.
37.
Thelwall
,
M.
,
2013
, “
Heart and Soul: Sentiment Strength Detection in the Social Web With SentiStrength
,”
Cyberemotions
, pp.
1
14
.
38.
Babich
,
P.
,
1992
, “
Customer Satisfaction: How Good is Good Enough?
Qual. Prog.
,
25
, pp.
65
67
.
39.
Manning
,
C. D.
,
Raghavan
,
P.
, and
Schütze
,
H.
,
2008
,
Introduction to Information Retrieval
, Vol.
1
,
Cambridge University Press
,
Cambridge, UK
.
40.
Huang
,
J.
,
Etzioni
,
O.
,
Zettlemoyer
,
L.
,
Clark
,
K.
, and
Lee
,
C.
,
2012
, “
Revminer: An Extractive Interface for Navigating Reviews on a Smartphone
,”
25th Annual ACM Symposium on User Interface Software and Technology
,
UIST’12
, New York, pp.
3
12
.10.1145/2380116.2380120
41.
Gimpel
,
K.
,
Schneider
,
N.
,
O'Connor
,
B.
,
Das
,
D.
,
Mills
,
D.
,
Eisenstein
,
J.
,
Heilman
,
M.
,
Yogatama
,
D.
,
Flanigan
,
J.
, and
Smith
,
N. A.
,
2011
, “
Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments
,”
49th Annual Meeting of the ACL: HLT 2011
, Stroudsburg, PA, pp.
42
47
.
42.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
.
43.
Thelen
,
M.
, and
Riloff
,
E.
,
2002
, “
A Bootstrapping Method for Learning Semantic Lexicons Using Extraction Pattern Contexts
,”
ACL-02 Conference on Empirical Methods in Natural Language Processing
,
EMNLP’02
, Vol. 10, Stroudsburg, PA, pp.
214
221
.10.3115/1118693.1118721
44.
Asuncion
,
A.
,
Welling
,
M.
,
Smyth
,
P.
, and
Teh
,
Y. W.
,
2009
, “
On Smoothing and Inference for Topic Models
,”
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
, UAI’09, Arlington, VA, pp.
27
34
.
45.
Tuarob
,
S.
,
Bhatia
,
S.
,
Mitra
,
P.
, and
Giles
,
C.
,
2013
, “
Automatic Detection of Pseudocodes in Scholarly Documents Using Machine Learning
,”
12th International Conference on Document Analysis and Recognition
(
ICDAR
), Washington, DC, Aug. 25–28, pp.
738
742
.10.1109/ICDAR.2013.151
46.
Pookulangara
,
S.
, and
Koesler
,
K.
,
2011
, “
Cultural Influence on Consumers' Usage of Social Networks and Its' Impact on Online Purchase Intentions
,”
J. Retailing Consum. Serv.
,
18
(
4
), pp.
348
354
.10.1016/j.jretconser.2011.03.003
47.
Ioanăs
,
E.
, and
Stoica
,
I.
,
2014
, “
Social Media and Its Impact on Consumers Behavior
,”
Int. J. Econ. Pract. Theor.
,
4
(
2
), pp.
295
303
.
48.
Huang
,
E. H.
,
Socher
,
R.
,
Manning
,
C. D.
, and
Ng
,
A. Y.
,
2012
, “
Improving Word Representations Via Global Context and Multiple Word Prototypes
,” ACL’12, pp.
873
882
.
You do not currently have access to this content.