Assembly modeling as one of the most important steps in the product development activity relies more and more on the extensive use of computer-aided design (cad) systems. The modeling of geometric interfaces between the components of the assembly is of central importance in the simulation of mechanical assemblies. Over the past decades, many researchers have devoted their efforts to establish theories and systems covering assembly modeling. Although the product form or shape has been extensively investigated considering the nominal cad geometry, inevitable limitations can be reported. Computer aided tolerancing (CAT) systems provide simulation tools for modeling the effects of tolerances on the assembly but still lack of form deviation considerations. The skin model concept which stemmed from the theoretical foundations of geometrical product specification and verification (GPS) has been developed to enrich the nominal geometry considering realistic physical shapes. However, the digital representation of the skin model has been investigated only recently. This paper presents a novel approach for a skin model based simulation of contact and mobility for assemblies. Three important issues are addressed: the geometric modeling of the contact, the contact quality evaluation, and the motion analysis. The main contribution to CAT can be found in the analysis of the effects of geometric form deviations on the assembly and motion behavior of solid mechanics, which comprises models for the assembly simulation, for the contact quality evaluation, and for the motion analysis. A case study is presented to illustrate the proposed approaches.

References

References
1.
Ballu
,
A.
,
Mathieu
,
L.
, and
Dantan
,
J.-Y.
,
2003
, “
Global View of Geometrical Specifications
,”
Geometric Product Specification and Verification: Integration of Functionality
,
P.
Bourdet
and
L.
Mathieu
, eds.,
Springer
, Dordrecht,
Netherlands
, pp.
13
24
.10.1007/978-94-017-1691-8_2
2.
Mathieu
,
L.
, and
Ballu
,
A.
,
2007
, “
A Model for a Coherent and Complete Tolerancing Process
,”
Models for Computer Aided Tolerancing in Design and Manufacturing
,
J.
Davidson
, ed.,
Springer
, Dordrecht,
Netherlands
, pp.
35
44
.10.1007/1-4020-5438-6_5
3.
Dantan
,
J.-Y.
,
Ballu
,
A.
, and
Mathieu
,
L.
,
2008
, “
Geometrical Product Specifications—Model for Product Life Cycle
,”
Comput.-Aided Des.
,
40
(
4
), pp.
493
501
.10.1016/j.cad.2008.01.004
4.
Anwer
,
N.
,
Ballu
,
A.
, and
Mathieu
,
L.
,
2013
, “
The Skin Model, a Comprehensive Geometric Model for Engineering Design
,”
CIRP Ann.-Manuf. Technol.
,
62
(
1
), pp.
143
146
.10.1016/j.cirp.2013.03.078
5.
Schleich
,
B.
,
Walter
,
M.
,
Wartzack
,
S.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2012
, “
A Comprehensive Framework for Skin Model Simulation
,” ASME, Nantes, ed.,
ASME
Paper No. ESDA2012-82204.10.1115/ESDA2012-82204
6.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Skin Model Shapes: A New Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering
,”
Comput.-Aided Des.
,
50
, pp.
1
15
.10.1016/j.cad.2014.01.001
7.
Anwer
,
N.
,
Schleich
,
B.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
From Solid Modelling to Skin Model Shapes: Shifting Paradigms in Computer-Aided Tolerancing
,”
CIRP Ann.-Manuf. Technol.
,
63
(
1
), pp.
137
140
.10.1016/j.cirp.2014.03.103
8.
Chase
,
K.
, and
Parkinson
,
A.
,
1991
, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
,
3
(
1
), pp.
23
37
.10.1007/BF01580066
9.
Hong
,
Y.
, and
Chang
,
T.
,
2002
, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2425
2459
.10.1080/00207540210128242
10.
Li
,
B.
, and
Roy
,
U.
,
2001
, “
Relative Positioning of Toleranced Polyhedral Parts in an Assembly
,”
IIE Trans.
,
33
(
4
), pp.
323
336
.10.1023/A:1007694506696
11.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Patalano
,
S.
,
2010
, “
Modeling and Simulation of Assembly Constraints in Tolerance Analysis of Rigid Part Assemblies
,”
Product Lifecycle Management: Geometric Variations
,
ISTE, Wiley
, London, pp.
209
229
.
12.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Patalano
,
S.
,
2010
, “
Variational Modeling and Assembly Constraints in Tolerance Analysis of Rigid Part Assemblies: Planar and Cylindrical Features
,”
Int. J. Adv. Manuf. Technol.
,
49
(
49
), pp.
239
251
.10.1007/s00170-009-2400-5
13.
Samper
,
S.
,
Adragna
,
P.-A.
,
Favreliere
,
H.
, and
Pillet
,
M.
,
2009
, “
Modeling of 2d and 3d Assemblies Taking Into Account Form Errors of Plane Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
041005
.10.1115/1.3249575
14.
Formosa
,
F.
, and
Samper
,
S.
,
2007
, “
Modal Expression of Form Defects
,”
Models for Computer Aided Tolerancing in Design and Manufacturing
,
J.
Davidson
, ed.,
Springer
, Dordrecht,
Netherlands
, pp.
13
22
.10.1007/1-4020-5438-6_3
15.
Stoll
,
T.
,
Wittmann
,
S.
,
Helwig
,
S.
, and
Paetzold
,
K.
,
2007
, “
Registration of Measured and Simulated Non-Ideal Geometry Using Optimization Methods
,”
Proceedings of the 10th CIRP International Seminar on Computer Aided Tolerancing
, Erlangen, A. Weckenmann, ed., Paper No. BV1.
16.
Stoll
,
T.
,
Wittmann
,
S.
, and
Meerkamm
,
H.
,
2009
, “
Tolerance Analysis With Detailed Part Modeling Including Shape Deviations
,”
Proceedings of the 11th CIRP International Conference on Computer Aided Tolerancing
, Annecy, M. Giordano, F. Villeneuve, and L. Mathieu, eds, Paper No. C5-1.
17.
Besl
,
P.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-d Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.10.1109/34.121791
18.
Kockara
,
S.
,
Halic
,
T.
,
Iqbal
,
K.
,
Bayrak
,
C.
, and
Rowe
,
R.
,
2007
, “
Collision Detection: A Survey
,”
IEEE International Conference on Systems
, Man and Cybernetics, Montreal, pp.
4046
4051
.
19.
Huang
,
Q.-X.
,
Flöry
,
S.
,
Gelfand
,
N.
,
Hofer
,
M.
, and
Pottmann
,
H.
,
2006
, “
Reassembling Fractured Objects by Geometric Matching
,”
ACM Trans. Graphics
,
25
(
3
), pp.
569
578
.10.1145/1141911.1141925
20.
Flöry
,
S.
,
2009
, “
Fitting Curves and Surfaces to Point Clouds in the Presence of Obstacles
,”
Comput. Aided Geom. Des.
,
26
(
2
), pp.
192
202
.10.1016/j.cagd.2008.04.003
21.
Flöry
,
S.
, and
Hofer
,
M.
,
2010
, “
Surface Fitting and Registration of Point Clouds Using Approximations of the Unsigned Distance Function
,”
Comput. Aided Geom. Des.
,
27
(
1
), pp.
60
77
.10.1016/j.cagd.2009.09.001
22.
Zhang
,
M.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Zhao
,
H. B.
,
2011
, “
A Discrete Geometry Framework for Geometrical Product Specifications
,”
Proceedings of the 21st CIRP Design Conference
, Kaist, M. K. Thompson, ed., Paper No. 20.
23.
Zhang
,
M.
,
Anwer
,
N.
,
Stockinger
,
A.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2013
, “
Discrete Shape Modeling for Skin Model Representation
,”
Proc. Inst. Mech. Eng.
, Part B,
227
(
5
), pp.
672
680
.10.1177/0954405412466987
24.
Pottmann
,
H.
,
Leopoldseder
,
S.
, and
Hofer
,
M.
,
2004
, “
Registration Without Icp
,”
Comput. Vision Image Understanding
,
95
(
1
), pp.
54
71
.10.1016/j.cviu.2004.04.002
You do not currently have access to this content.