Functional tolerancing must ensure the assembly and the functioning of a mechanism. This paper compares two methods of tolerance analysis of a mechanical system: the method of “analysis lines” and the method of “polytopes.” The first method needs a discretization of the ending functional surface according to various analysis lines placed on the outer-bound of the face and oriented along the normal of the surface. The second method uses polytopes. The polytopes are defined from the acceptable limits of the geometric deviations of parts and possible displacements between two parts. Minkowski sums and intersections polytopes are then carried out to take into account all geometric variations of a mechanism.

References

References
1.
Salomons
,
O. W.
,
Haalboom
,
F. J.
,
Jonge Poerink
,
H. J.
,
van Slooten
,
F.
,
Van Houten
,
F. J. A. M.
, and
Kals
,
H. J. J.
,
1996
, “
A Computer Aided Tolerancing Tool I: Tolerancing Specification
,”
Comput. Ind.
,
31
(
2
), pp.
161
174
.10.1016/0166-3615(96)00046-2
2.
Salomons
,
O. W.
,
Haalboom
,
F. J.
,
Jonge Poerink
,
H. J.
,
van Slooten
,
F.
,
Van Houten
,
F. J. A. M.
, and
Kals
,
H. J. J.
,
1996
, “
A Computer Aided Tolerancing Tool II: Tolerancing Analysis
,”
Comput. Ind.
,
31
(
2
), pp.
175
186
.10.1016/0166-3615(96)00047-4
3.
Chase
,
K. W.
,
1999
, “
Tolerance Allocation Methods for Designers
,” ADCATS Report No. 99-6.
4.
Islam
,
M. N.
,
2004
, “
Functional Dimensioning and Tolerancing Software for Concurrent Engineering Applications
,”
Comput. Ind.
,
54
(
2
), pp.
169
190
.10.1016/j.compind.2003.09.006
5.
Anselmetti
,
B.
,
2006
, “
Generation of Functional Tolerancing Based on Positioning Features
,”
Comput. Aided Des.
,
38
(
8
), pp.
902
919
.10.1016/j.cad.2006.05.005
6.
Johannesson
,
H.
, and
Sodderberg
,
R.
,
2000
, “
Structure and Matrix Models for Tolerance Analysis From Configuration to Detail Design
,”
Res. Eng. Des.
,
12
(
2
), pp.
112
125
.10.1007/s001630050027
7.
Ballot
,
E.
, and
Bourdet
,
P.
,
1995
, “
Geometrical Behavior Laws for Computer Aided Tolerancing
,”
Proceedings of the 4th CIRP Seminar on Computer Aided Tolerancing
,
Tokyo
,
Japan
, Apr. 5–6, pp.
143
153
.
8.
Mehdi-Souzani
,
C.
, and
Anselmetti
,
B.
,
2008
, “
Integration of Automatic Functional Tolerancing Into the Design Process
,”
Proceedings of IDMME—Virtual Concept
,
Beijing
,
China
, CDRom IDMME.
9.
Nigam
,
S. D.
, and
Turner
,
J. U.
,
1995
, “
Review of Statistical Approaches to Tolerance Analysis
,”
Comput. Aided Des.
,
27
(
1
), pp.
6
15
.10.1016/0010-4485(95)90748-5
10.
Shan
,
A.
, and
Roth
,
R. N.
,
2003
, “
Genetic Algorithms in Statistical Tolerancing
,”
J. Math. Comput. Model.
,
38
(
11–13
), pp.
1427
1436
.10.1016/S0895-7177(03)90146-4
11.
Kuo
,
C. H.
, and
Tsai
,
J. C.
,
2010
, “
An Analytical Computation Method for Statistical Tolerance Analysis of Assemblies With Truncated Normal Mean Shift
,”
Int. J. Prod. Res.
,
49
(
7
), pp.
1937
1955
.10.1080/00207541003639634
12.
Skowronski
,
V. J.
, and
Turner
,
J. U.
,
1997
, “
Using Monte Carlo Variance Reduction in Statistical Tolerance Synthesis
,”
Comput. Aided Des.
,
29
(
1
), pp.
63
69
.10.1016/S0010-4485(96)00050-4
13.
Lin
,
C.
,
Huang
,
W.
,
Jeng
,
M.
, and
Doong
,
J. L.
,
1997
, “
Study of an Assembly Tolerance Allocation Model Based on Monte Carlo Simulation
,”
J. Mater. Process. Technol.
,
70
(
1
), pp.
9
16
.10.1016/S0924-0136(97)00034-4
14.
Shah
,
J. J.
,
Ameta
,
G.
,
Shen
,
Z.
, and
Davidson
,
J. K.
,
2007
, “
Navigating the Tolerance Analysis Maze
,”
Comput. Aided Des. Appl.
,
4
(
5
), pp.
705
718
10.1080/16864360.2007.10738504.
15.
Giordano
,
M.
,
Pairel
,
E.
, and
Samper
,
S.
,
1999
, “
Mathematical Representation of Tolerance Zones
,”
Proceedings of the 6th CIRP Seminar on Computer Aided Tolerancing
,
University of Twente
,
Enschede, The Netherlands
, Mar. 22–24, pp.
177
186
.
16.
Davidson
,
J. K.
,
Mujezinovic
,
A.
, and
Shah
,
J. J.
,
2002
, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
609
622
.10.1115/1.1497362
17.
Roy
,
U.
, and
Li
,
B.
,
1999
, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects. II: Size, Orientation and Position Tolerances
,”
Comput. Aided Des.
,
31
(
4
), pp.
273
285
.10.1016/S0010-4485(99)00028-7
18.
Pierre
,
L.
,
Teissandier
,
D.
, and
Nadeau
,
J. P.
,
2009
, “
Integration of Thermomechanical Strains Into Tolerancing Analysis
,”
Int. J. Interact. Des. Manuf.
,
3
(
4
), pp.
247
263
.10.1007/s12008-009-0058-8
19.
Pierre
,
L.
,
Teissandier
,
D.
, and
Nadeau
,
J. P.
,
2014
, “
Variational Tolerancing Analysis Taking Thermomechanical Strains Into Account: Application to a High Pressure Turbine
,”
Mech. Mach. Theory
,
74
, pp.
82
101
.10.1016/j.mechmachtheory.2013.11.014
20.
Clozel
,
P.
, and
Rance
,
P. A.
,
2010
, “
MECAmaster: a Tool for Assembly Simulation From Early Design, Industrial Approach
,”
Geometric Tolerancing of Products
,
Wiley
,
New York
, pp.
241
273
10.1002/9781118587027.ch10.
21.
cetol.6, “
Reduce Assembly Variation with Tolerance Analysis Software
,” http://www.sigmetrix.com/
22.
dcs,
2012
, “
Variation Analysis and Tolerance Analysis
,” www.3dcs.com
23.
Falgarone
,
H.
, and
Chevassus
,
N.
,
2004
, “
An Innovative Design Method and Tool for Structural and Functional Analysis
,”
Proceedings of 14th CIRP Design Seminar
,
Cairo
,
Egypt
.
24.
Loof
,
J.
,
Hermansson
,
T.
, and
Sodderberg
,
R.
,
2005
, “
An Efficient Solution to the Discrete Least Cost Tolerance Allocation Problem With General Loss Functions
,”
Model for Computer Aided Tolerancing in Design and Manufacturing
,
Springer
,
Dordrecht, The Netherlands
, pp.
115
124
.
25.
Kurlarni
,
S. V.
, and
Garg
,
T. K.
,
1987
, “
Allocation of Tolerances to the Components of an Assembly for Minimum Cost
,”
Int. J. Mech. Eng.
,
67
(
6
), pp.
126
129
.
26.
Anselmetti
,
B.
,
2010
, “
Part Optimization and Tolerances Synthesis
,”
Int. J. Adv. Manuf. Technol.
,
48
(
9–12
), pp.
1221
1237
.10.1007/s00170-009-2355-6
27.
Khanafer
,
M.
,
Desrochers
,
A.
, and
Laperrière
,
L.
,
2007
, “
Tolerancing Assistance Methodology in a Product Life Cycle Perspective
,”
Proceedings of 18th IASTED International Conference: Modeling and Simulation
,
Anaheim, CA
, May 30–June 1, pp.
514
520
.
28.
Benichou
,
S.
, and
Anselmetti
,
B.
,
2011
, “
Thermal Dilatation in Functional Tolerancing
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1575
1587
.10.1016/j.mechmachtheory.2011.06.009
29.
Fleming
,
A.
,
1988
, “
Geometric Relationships Between Toleranced Features
,”
Artif. Intell.
,
37
(
1–3
), pp.
403
412
.10.1016/0004-3702(88)90062-8
30.
ISO 1101:2013,
2013
,
Geometrical Product Specifications (GPS), Geometrical Tolerancing, Tolerances of Form, Orientation, Location and Run-Out, ISO, Geneva, Switzerland.
31.
Fleming
,
A. D.
,
1987
, “
Analysis of Uncertainties and Geometric Tolerances in Assemblies of Parts
,” Ph.D. thesis, University of Edinburgh, Edinburgh, Scotland.
32.
Srinivasan
,
V.
,
1993
, “
Role of Sweeps in Tolerancing Semantics
,”
Manufacturing Review
,
6
(
4
), pp.
275
281
.
33.
Giordano
,
M.
, and
Duret
,
D.
,
1993
, “
Clearance Space and Deviation Space
,”
Proceedings of the 3rd CIRP Seminar on Computer Aided Tolerancing
,
ENS Cachan
,
France
, Apr., pp.
179
196
.
34.
Teissandier
,
D.
, and
Delos
,
V.
,
1999
, “
Operations on Polytopes: Application to Tolerance Analysis
,”
Proceedings of the 6th CIRP Seminar on Computer Aided Tolerancing
,
University of Twente
,
Enschede, The Netherlands
, Mar. 22–24, pp.
425
433
.
35.
Wu
,
Y.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2003
, “
Improvements to Algorithms for Computing the Minkowski Sum of 3-Polytopes
,”
Comput. Aided Des.
,
35
(
13
), pp.
1181
1192
.10.1016/S0010-4485(03)00023-X
36.
Teissandier
,
D.
, and
Delos
,
V.
,
2011
, “
Algorithm to Calculate the Minkowski Sums of 3-Polytopes Based on Normal Fans
,”
Comput. Aided Des.
,
43
(
12
), pp.
1567
1576
.10.1016/j.cad.2011.06.016
37.
Anselmetti
,
B.
,
Chavanne
,
R.
,
Yang
,
J.-Y.
, and
Anwer
,
N.
,
2010
, “
quick gps: A New CAT System for Single-Part Tolerancing
,”
Comput. Aided Des.
,
42
(
9
), pp.
768
780
.10.1016/j.cad.2010.04.006
38.
Chavanne
,
R.
,
2011
, “
Contribution au Tolérancement Fonctionnel 3D des Mécanismes Complexes: Synthèse des Spécifications et Analyse de Tolerances
,” Ph.D. thesis, Cachan, France.
You do not currently have access to this content.