Given a finite set of points in R3, polyhedronization deals with constructing a simple polyhedron such that the vertices of the polyhedron are precisely the given points. In this paper, we present randomized approximation algorithms for minimal volume polyhedronization (MINVP) and maximal volume polyhedronization (MAXVP) of three dimensional point sets in general position. Both, MINVP and MAXVP, problems have been shown to be NP-hard and to the best of our knowledge, no practical algorithms exist to solve these problems. It has been shown that for any point set S in R3, there always exists a tetrahedralizable polyhedronization of S. We exploit this fact to develop a greedy heuristic for MINVP and MAXVP constructions. Further, we present an empirical analysis on the quality of the approximation results of some well defined point sets. The algorithms have been validated by comparing the results with the optimal results generated by an exhaustive searching (brute force) method for MINVP and MAXVP for some well chosen point sets of smaller sizes. Finally, potential applications of minimum and maximum volume polyhedra in 4D printing and surface lofting, respectively, have been discussed.

References

References
1.
Grunbaum
,
B.
,
1994
, “
Hamiltonian Polygons and Polyhedra
,”
Geocombinatorics
,
3
(
1–4
), pp.
83
89
.
2.
Lennes
,
N. J.
,
1911
, “
Theorems on the Simple Finite Polygon and Polyhedron
,”
Am. J. Math.
,
33
(
1/4
), pp.
37
62
.10.2307/2369986
3.
Barequet
,
G.
,
Benbernou
,
N.
,
Charlton
,
D.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Ishaque
,
M.
,
Lubiw
,
A.
,
Schulz
,
A.
,
Souvaine
,
D. L.
,
Toussaint
,
G. T.
, and
Winslow
,
A.
,
2013
, “
Bounded-Degree Polyhedronization of Point Sets
,”
Comput. Geom. Theory Appl.
,
46
(
2
), pp.
148
153
.10.1016/j.comgeo.2012.02.008
4.
Agarwal
,
P. K.
,
Hurtado
,
F.
,
Toussaint
,
G. T.
, and
Trias
,
J.
,
2008
, “
On Polyhedra Induced by Point Sets in Space
,”
Discrete Appl. Math.
,
156
(
1
), pp.
42
54
.10.1016/j.dam.2007.08.033
5.
Edelsbrunner
,
H.
,
Preparata
,
F. P.
, and
West
,
D. B.
,
1990
, “
Tetrahedrizing Point Sets in Three Dimensions
,”
J. Symbolic Comput.
,
10
(
3–4
), pp.
335
347
.10.1016/S0747-7171(08)80068-5
6.
Fekete
,
S. P.
,
2000
, “
On Simple Polygonalizations With Optimal Area
,”
Discrete Comput. Geom.
,
23
(
1
), pp.
73
110
.10.1007/PL00009492
7.
Muravitskiy
,
V.
, and
Tereshchenko
,
V.
,
2011
, “
Generating a Simple Polygonalizations
,”
Proceedings of 15th International Conference on Information Visualisation
, IV’11, IEEE Computer Society, pp.
502
506
.
8.
Veltkamp
,
R. C.
,
1995
, “
Boundaries Through Scattered Points of Unknown Density
,”
Graph. Models Image Process.
,
57
(
6
), pp.
441
452
.10.1006/gmip.1995.1038
9.
Chen
,
J.
, and
Han
,
Y.
,
1990
, “
Shortest Paths on a Polyhedron
,”
Proceedings of the Sixth Annual Symposium on Computational Geometry
, SCG’90, ACM, pp.
360
369
.
10.
Barequet
,
G.
,
Goodrich
,
M. T.
,
Levi-Steiner
,
A.
, and
Steiner
,
D.
,
2003
, “
Straight-Skeleton Based Contour Interpolation
,”
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
, SODA’03, Society for Industrial and Applied Mathematics, pp.
119
127
.
11.
O'Rourke
,
J.
,
1981
, “
Polyhedra of Minimal Area as 3d Object Models
,”
Proceedings of the 7th International Joint Conference on Artificial Intelligence
,
IJCAI’81
,
Morgan Kaufmann Publishers Inc.
, Vol.
2
, pp.
664
666
.
12.
Peethambaran
,
J.
,
Dev
,
A.
, and
Muthuganapathy
,
R.
,
2013
, “
Volume Constrained Polyhedronizations of Point Sets in 3-space
,” Eleventh Annual Symposium on Geometry Processing (Poster), Eurographics, SGP’13.
13.
O'Rourke
,
J.
,
1998
,
Computational Geometry in C
,
2nd ed.
Cambridge University
,
New York
.
14.
Bern
,
M.
,
1993
, “
Compatible Tetrahedralizations
,”
Proceedings of the Ninth Annual Symposium on Computational Geometry
, SoCG’93, ACM, pp.
281
288
.
15.
Ruppert
,
J.
, and
Seidel
,
R.
,
1992
, “
On the Difficulty of Triangulating Three-Dimensional Nonconvex Polyhedra
,”
Discrete Comput. Geom.
,
7
(
1
), pp.
227
253
.10.1007/BF02187840
16.
Campbell
,
T. A.
, and
Tibbits
,
B. G. S.
,
2014
, “
The Next Wave: 4D Printing Programming the Material World
,” Atlantic Council, Washington, DC, Technical Report.
17.
O'Rourke
,
J.
,
1985
, “
Finding Minimal Enclosing Boxes
,”
Int. J. Comput. Inf. Sci.
,
14
(
3
), pp.
183
199
.10.1007/BF00991005
18.
Barequet
,
G.
, and
Har-Peled
,
S.
,
2001
, “
Efficiently Approximating the Minimum-Volume Bounding Box of a Point Set in Three Dimensions
,”
J. Algoritms
,
38
(
1
), pp.
91
109
.10.1006/jagm.2000.1127
You do not currently have access to this content.