As interest in product recovery, reuse, and recycling rises, planning and evaluating disassembly sequences are becoming increasingly important. The manner in which a product can be taken apart strongly influences end-of-life (EOL) operations and costs. Early disassembly planning can also inform non-EOL processes including repair and routine maintenance. Recently, research has concentrated on creating optimization algorithms which automatically generate disassembly sequences. These algorithms often require data that are unavailable or estimated with high uncertainty. Furthermore, industries often employ Cad modeling software to evaluate disassembly sequences during the design stage. The combination of these methods result in mathematically generated solutions, however, the solutions may not account for attributes that are difficult to quantify (human interaction). To help designers better explore and understand disassembly sequence opportunities, the research presented in this paper combines the value of mathematical modeling with the benefits of immersive computing technologies (ICT) to aid in early design decision making. For the purposes of this research, an ICT application was developed. The application displays both 3D geometry of a product and an interactive graph visualization of existing disassembly sequences. The user can naturally interact with the geometric models and explore sequences outlined in the graph visualization. The calculated optimal path can be highlighted allowing the user to quickly compare the optimal sequence against alternatives. The application has been implemented in a three wall immersive projection environment. A user study involving a hydraulic pump assembly was conducted. The results suggest that this approach may be a viable method of evaluating disassembly sequences early in design.

References

References
1.
Lambert
,
F. J.
,
2001
, “
Optimum Disassembly Sequence Generation
,” Proc.
SPIE
4193, Environmentally Conscious Manufacturing, Vol. 4193.10.1117/12.417249
2.
Berg
,
L. P.
,
Behdad
,
S.
,
Vance
,
J. M.
, and
Thurston
,
D.
,
2012
, “
Disassembly Sequence Evaluation Using Graph Visualization and Immersive Computing Technologies
,”
ASME
Paper No. DETC2012-70388.10.1115/DETC2012-70388
3.
Behdad
,
S.
,
Berg
,
L. P.
,
Thurston
,
D.
, and
Vance
,
J.
,
2014
, “
Leveraging Virtual Reality Experiences With Mixed-Integer Nonlinear Programming Visualization of Disassembly Sequence Planning Under Uncertainty
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041005
.10.1115/1.4026463
4.
Behdad
,
S.
,
Berg
,
L. P.
,
Vance
,
J.
, and
Thurston
,
D.
,
2014
, “
Immersive Computing Technology to Investigate Tradeoffs Under Uncertainty in Disassembly Sequence Planning
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071001
10.1115/1.4025021.
5.
Behdad
,
S.
,
Berg
,
L. P.
,
Thurston
,
D.
, and
Vance
,
J. M.
,
2013
, “
Synergy Between Normative and Descriptive Design Theory and Methodology
,”
ASME
Paper No. DETC2013-1303510.1115/DETC2013-13035.
6.
O'Shea
,
B.
,
Kaebernick
,
H.
,
Grewal
,
S.
,
Perlewitz
,
H.
,
Muller
,
K.
, and
Seliger
,
G.
,
1999
, “
Method for Automatic Tool Selection for Disassembly Planning
,”
Assembly Autom.
,
19
(
1
), pp.
47
54
.10.1108/01445159910254253
7.
Moore
,
K. E.
,
Güngör
,
A.
, and
Gupta
,
S. M.
,
2001
, “
Petri Net Approach to Disassembly Process Planning for Products With Complex AND/OR Precedence Relationships
,”
Eur. J. Oper. Res.
,
135
(
2
), pp.
428
449
.10.1016/S0377-2217(00)00321-0
8.
Singh
,
A.
,
Tiwari
,
M.
, and
Mukhopadhyay
,
S. K.
,
2003
, “
Modeling and Planning of the Disassembly Processes Using an Enhanced Expert Petri Net
,”
Int. J. Prod. Res.
,
41
(
16
), pp.
3761
3792
.10.1080/0020754031000109125
9.
Kongar
,
E.
, and
Gupta
,
S. M.
,
2002
, “
A Multi-Criteria Decision Making Approach for Disassembly-to-Order Systems
,”
J. Electron. Manuf.
,
11
(
02
), pp.
171
183
.10.1142/S0960313102000345
10.
Menye
,
J.-B.
,
Ait-Kadi
,
D.
,
Coulibaly
,
A.
, and
Caillaud
,
E.
,
2009
, “
Mathematical Model for the Minimization of the Mean Disassembly Time of a Mechanical System at Design Stage
,”
IEEE International Conference on Computers and Industrial Engineering
, Troyes, France, July 6–8, pp.
1198
1203
.
11.
Behdad
,
S.
, and
Thurston
,
D.
,
2010
, “
Disassembly Process Planning Tradeoffs for Product Maintenance
,”
Proceedings of the ASME Design Engineering Technical Conference
, Montreal, Quebec, Canada, Aug. 15–18, pp.
427
434
.
12.
Pomares Baeza
,
J.
,
Torres Medina
,
F.
, and
Puente Mendez
,
S.
,
2002
, “
Disassembly Movements for Geometrical Objects Through Heuristic Methods
,” Proc. SPIE 4569, Environmentally Conscious Manufacturing II, Vol. 71.
13.
Seo
,
K. K.
,
Park
,
J. H.
, and
Jang
,
D. S.
,
2001
, “
Optimal Disassembly Sequence Using Genetic Algorithms Considering Economic and Environmental Aspects
,”
Int. J. Adv. Manuf. Technol.
,
18
(
5
), pp.
371
380
.10.1007/s001700170061
14.
Giudice
,
F.
, and
Fargione
,
G.
,
2007
, “
Disassembly Planning of Mechanical Systems for Service and Recovery: A Genetic Algorithms Based Approach
,”
J. Intell. Manuf.
,
18
(
3
), pp.
313
329
.10.1007/s10845-007-0025-9
15.
Lee
,
S.
,
Lye
,
S.
, and
Khoo
,
M.
,
2001
, “
A Multi-Objective Methodology for Evaluating Product End-of-Life Options and Disassembly
,”
Int. J. Adv. Manuf. Technol.
,
18
(
2
), pp.
148
156
.10.1007/s001700170086
16.
Hui
,
W.
,
Dong
,
X.
, and
Guanghong
,
D.
,
2008
, “
A Genetic Algorithm for Product Disassembly Sequence Planning
,”
Neurocomputing
,
71
(
13–15
), pp.
2720
2726
.10.1016/j.neucom.2007.11.042
17.
Henrioud
,
J.
,
Relange
,
L.
, and
Perrard
,
C.
,
2003
, “
Assembly Sequences, Assembly Constraints, Precedence Graphs
,”
IEEE International Symposium on Assembly and Task Planning
, Besancon, France, July 10–11, pp.
90
95
.
18.
Dini
,
G.
,
Failli
,
F.
, and
Santochi
,
M.
,
2001
, “
A Disassembly Planning Software System for the Optimization of Recycling Processes
,”
Prod. Plann. Control: Manage. Oper.
,
12
(
1
), pp.
2
12
.10.1080/09537280150203924
19.
Tang
,
Y.
,
Zhou
,
M.
,
Zussman
,
E.
, and
Caudill
,
R.
,
2000
, “
Disassembly Modeling, Planning and Application: A Review
,”
IEEE International Conference on Robotics and Automation
, San Francisco, CA, Vol.
3
, pp.
2197
2202
.
20.
Jiménez
,
P.
, and
Torras
,
C.
,
2000
, “
An Efficient Algorithm for Searching Implicit AND/OR Graphs With Cycles
,”
Artif. Intell.
,
124
(
1
), pp.
1
30
.10.1016/S0004-3702(00)00063-1
21.
Jiangang
,
G. A. O.
,
Dong
,
X.
,
Haifeng
,
C.
,
Guanghong
,
D.
, and
Jinsong
,
W.
,
2003
, “
Disassembly AND/OR Graph Model for Disassembly for Recycling
,”
IEEE International Symposium on Electronics and the Environment
, Boston, MA, May 19–22, pp.
54
59
.
22.
Gupta
,
R.
,
Whitney
,
D.
, and
Zeltzer
,
D.
,
1997
, “
Prototyping and Design for Assembly Analysis Using Multimodal Virtual Environments
,”
Comput.-Aided Des.
,
29
(
8
), pp.
585
597
.10.1016/S0010-4485(96)00093-0
23.
Angster
,
S. R.
, and
Jayaram
,
S.
,
1996
. “
VEDAM: Virtual Environments for Design and Manufacturing
,” Ph.D. thesis, Washington State University, Pullman, WA.
24.
Jayaram
,
S.
,
Connacher
,
H. I.
, and
Lyons
,
K. W.
,
1997
, “
Virtual Assembly Using Virtual Reality Techniques
,”
Comput.-Aided Des.
,
29
(
8
), pp.
575
584
.10.1016/S0010-4485(96)00094-2
25.
Jayaram
,
S.
,
Vance
,
J.
,
Gadh
,
R.
,
Jayaram
,
U.
, and
Srinivasan
,
H.
,
2001
, “
Assessment of VR Technology and its Applications to Engineering Problems
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
1
), pp.
72
83
.10.1115/1.1353846
26.
Seth
,
A.
,
Su
,
H.-J.
, and
Vance
,
J. M.
,
2008
, “
Development of a Dual-Handed Haptic Assembly System: SHARP
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
4
), p.
44502
.10.1115/1.3006306
27.
Tching
,
L.
,
Dumont
,
G.
, and
Perret
,
J.
,
2010
, “
Haptic Assembly of CAD Models Using Virtual Constraint Guidance
,”
ASME
Paper No. WINVR2010-3707
10.1115/WINVR2010-3707.
28.
Seth
,
A.
,
Vance
,
J. M.
, and
Oliver
,
J. H.
,
2010
, “
Virtual Reality for Assembly Methods Prototyping: A Review
,”
Virtual Reality
,
15
(
1
), pp.
5
20
.10.1007/s10055-009-0153-y
29.
Boud
,
A. C.
,
Haniff
,
D. J.
,
Baber
,
C.
, and
Steiner
,
S. J.
,
1999
, “
Virtual Reality and Augmented Reality as a Training Tool for Assembly Tasks
,”
IEEE International Conference on Information Visualization
, London, England, July 14–16, pp.
32
36
.
30.
Sung
,
R. C.
,
Ritchie
,
J. M.
,
Robinson
,
G.
,
Day
,
P. N.
,
Corney
,
J.
, and
Lim
,
T.
,
2009
, “
Automated Design Process Modeling and Analysis Using Immersive Virtual Reality
,”
Comput.-Aided Des.
,
41
(
12
), pp.
1082
1094
.10.1016/j.cad.2009.09.006
31.
Bierbaum
,
A.
,
Just
,
C.
,
Hartling
,
P.
,
Meinert
,
K.
,
Baker
,
A.
, and
Cruz-Neira
,
C.
,
2001
, “
VR Juggler: A Virtual Platform for Virtual Reality Application Development
,”
IEEE Virtual Reality Conference
, Yokohama, Japan, Mar. 13–17, pp.
89
96
.
32.
Pavlik
,
R. A.
, and
Vance
,
J. M.
,
2012
, “
VR JuggLua: A Framework for VR Applications Combining Lua, OpenSceneGraph, and VR Juggler
,”
IEEE 5th Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS)
, Costa Mesa, CA, Mar. 5, pp.
29
35
.
33.
Wang
,
R.
, and
Qian
,
X.
,
2010
,
OpenSceneGraph 3.0: Beginner's Guide
,
Packt Publishing
,
Olton, UK
.
34.
Ierusalimschy
,
R.
,
de Figueiredo
,
L. H.
,
Henrique
,
L.
,
Waldemar
,
F.
, and
Filho
,
W. C.
,
1995
, “
Lua—An Extensible Extension Language
,”
Softw. Pract. Experience
,
26
(
6
), pp.
635
652
.10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
35.
Pavlik
,
R. A.
, and
Vance
,
J. M.
,
2011
, “
Expanding Haptic Workspace for Coupled-Object Manipulation
,”
ASME
Paper No. WINVR2011-558510.1115/WINVR2011-5585.
36.
McNeely
,
W. A.
,
Puterbaugh
,
K. D.
, and
Troy
,
J. J.
,
1999
, “
Six Degree-of-Freedom Haptic Rendering Using Voxel Sampling
,”
SIGGRAPH'99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques
, ACM, Los Angeles, CA, Aug. 8–13, pp.
401
408
.
You do not currently have access to this content.