This paper formulates a new explicit expression for the generalized Jacobi polynomials (GJPs) in terms of Bernstein basis. We also establish and prove the basis transformation between the GJPs basis and Bernstein basis and vice versa. This transformation embeds the perfect least-square performance of the GJPs with the geometrical insight of the Bernstein form. Moreover, the GJPs with indexes corresponding to the number of endpoint constraints are the natural basis functions for least-square approximation of Bézier curves and surfaces. Application to multidegree reduction (MDR) of Bézier curves and surfaces in computer aided geometric design (CAGD) is given.

References

1.
Bhrawy
,
A. H.
,
Doha
,
E. H.
,
Baleanu
,
D.
, and
Ezz-Eldien
,
S. S.
, “
A Spectral TAU Algorithm Based on Jacobi Operational Matrix for Numerical Solution of Time Fractional Diffusion-Wave Equations
,”
J. Comput. Phys.
(in press)10.1016/j.jcp.2014.03.039.
2.
Doha
,
E. H.
,
Bhrawy
,
A. H.
,
Abdelkawy
,
M. A.
, and
Van Gorder
,
R. A.
,
2014
, “
Jacobi-Gauss-Lobatto Collocation Method for the Numerical Solution of 1 + 1 Nonlinear Schrodinger Equations
,”
J. Comput. Phys.
,
261
, pp.
244
255
.10.1016/j.jcp.2014.01.003
3.
Doha
,
E. H.
,
Bhrawy
,
A. H.
,
Baleanu
,
D.
, and
Hafez
,
R. M.
,
2014
, “
A New Jacobi Rational-Gauss Collocation Method for Numerical Solution of Generalized Pantograph Equations
,”
Appl. Numer. Math.
,
77
, pp.
43
54
.10.1016/j.apnum.2013.11.003
4.
Guo
,
B.-Y.
,
Shen
,
J.
, and
Wang
,
L. L.
,
2006
, “
Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials
,”
J. Sci. Comput.
,
27
(1–3), pp.
305
322
.10.1007/s10915-005-9055-7
5.
Guo
,
B.-Y.
, and
Yi
,
Y.-G.
,
2010
, “
Generalized Jacobi Rational Spectral Method and Its Applications
,”
J. Sci. Comput.
,
43
(2), pp.
201
238
.10.1007/s10915-010-9353-6
6.
Guo
,
B.-Y.
, and
Yi
,
Y.-G.
,
2012
, “
Generalized Jacobi Rational Spectral Method on the Half Line
,”
Adv. Comput. Math.
,
37
(1), pp.
1
37
.10.1007/s10444-011-9193-4
7.
Guo
,
B.-Y.
,
2013
, “
Some Progress in Spectral Methods
,”
Sci. China Math.
,
56
(12), pp.
2411
2438
.10.1007/s11425-013-4660-7
8.
Guo
,
B.-Y.
, and
Wang
,
Z.-Q.
,
2013
, “
A Collocation Method for Generalized Nonlinear Klein–Gordon Equation
,”
Adv. Comput. Math.
,
40
(
2
), pp.
377
398
.10.1007/s10444-013-9312-5
9.
Lorentz
,
G.
,
1953
,
Bernstein Polynomials
,
Toronto Press
, Toronto, ON, Canada.
10.
Gelbaum
,
B. R.
,
1995
,
Modern Real and Complex Analysis
,
Wiley
,
NewYork
.
11.
Farin
,
G.
,
1996
,
Curves and Surfaces for Computer Aided Geometric Design
,
Academic Press
,
Boston, MA
.
12.
Doha
,
E. H.
,
Bhrawy
,
A. H.
, and
Saker
,
M. A.
,
2011
, “
On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations
,”
Boundary Value Probl.
,
2011
(1), p.
829543
.10.1186/1687-2770-2011-16
13.
Doha
,
E. H.
,
Bhrawy
,
A. H.
, and
Saker
,
M. A.
,
2011
, “
Integrals of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations
,”
Appl. Math. Lett.
,
24
(4), pp.
559
565
.10.1016/j.aml.2010.11.013
14.
Pandey
,
R. K.
, and
Kumar
,
N.
,
2012
, “
Solution of LaneEmden Type Equations Using Bernstein Operational Matrix of Differentiation
,”
New Astron.
,
17
(3), pp.
303
308
.10.1016/j.newast.2011.09.005
15.
Bhatta
,
D.
,
2008
, “
Use of Modified Bernstein Polynomials to Solve KdVBurgers Equation Numerically
,”
Appl. Math. Comput.
,
206
(
1
), pp.
457
464
.10.1016/j.amc.2008.09.031
16.
Bhatta
,
D. D.
, and
Bhatti
,
M. I.
,
2006
, “
Numerical Solution of KdV Equation Using Modified Bernstein Polynomials
,”
Appl. Math. Comput.
,
174
(2), pp.
1255
1268
.10.1016/j.amc.2005.05.049
17.
Isik
,
O. R.
,
Sezer
,
M.
, and
Guney
,
Z.
,
2011
, “
A Rational Approximation Based on Bernstein Polynomials for High Order Initial and Boundary Values Problems
,”
Appl. Math. Comput.
,
217
(22), pp.
9438
9450
.10.1016/j.amc.2011.04.038
18.
Yousefi
,
S. A.
,
Behroozifar
,
M.
, and
Dehghan
,
M.
,
2012
, “
Numerical Solution of the Nonlinear Age-Structured Population Models by Using the Operational Matrices of Bernstein Polynomials
,”
Appl. Math. Modell.
,
36
(3), pp.
945
963
.10.1016/j.apm.2011.07.041
19.
Yousefi
,
S. A.
,
Behroozifar
,
M.
, and
Dehghan
,
M.
,
2011
, “
The Operational Matrices of Bernstein Polynomials for Solving the Parabolic Equation Subject to Specification of the Mass
,”
J. Comput. Appl. Math.
,
235
(17), pp.
5272
5283
.10.1016/j.cam.2011.05.038
20.
Maleknejad
,
K.
,
Hashemizadeh
,
E.
, and
Basirat
,
B.
,
2012
, “
Computational Method Based on Bernstein Operational Matrices for Nonlinear Volterra–Fredholm–Hammerstein Integral Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(1), pp.
52
61
.10.1016/j.cnsns.2011.04.023
21.
Maleknejad
,
K.
,
Basirat
,
B.
, and
Hashemizadeh
,
E.
,
2012
, “
A Bernstein Operational Matrix Approach for Solving a System of High Order Linear Volterra-Fredholm Integro-Differential Equations
,”
Math. Comput. Modell.
,
55
(3–4), pp.
1363
1372
.10.1016/j.mcm.2011.10.015
22.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.10.1016/j.cma.2004.10.008
23.
Xu
,
G.
,
Mourrain
,
B.
,
Duvigneau
,
R.
, and
Galligo
,
A.
,
2011
, “
Parameterization of Computational Domain in Isogeometric Analysis: Methods and Comparison
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
23–24
), pp.
2021
2031
.10.1016/j.cma.2011.03.005
24.
Szegö
,
G.
,
1975
,
Orthogonal Polynomials
, 4th ed.,
The American Mathematical Society
,
Providence, RI
.
25.
Rice
,
J.
,
1964
,
The Approximation of Functions
, Vol.
1
Linear Theory, Addison Wesley
, Reading, MA.
26.
Farouki
,
R. T.
,
2000
, “
Legendre–Bernstein Basis Transformations
,”
J. Comput. Appl. Math.
,
119
(1–2), pp.
145
160
.10.1016/S0377-0427(00)00376-9
27.
Rababah
,
A.
,
2003
, “
Transformation of Chebychev–Bernstein Polynomial Basis
,”
Comput. Methods Appl. Math.
,
3
(4), pp.
608
622
.10.2478/cmam-2003-0038
28.
Rababah
,
A.
,
2004
, “
Jacobi–Bernstein Basis Transformation
,”
Comput. Methods Appl. Math.
,
4
(2), pp.
206
214
.10.2478/cmam-2004-0012
29.
Jüttler
,
B.
,
1998
, “
The Dual Basis Functions for the Bernstein Polynomials
,”
Adv. Comput. Math.
,
8
(4), pp.
345
352
.10.1023/A:1018912801267
30.
Cheney
,
E. W.
,
1982
,
Introduction to Approximation Theory
, 2nd ed.,
Chelsea Publishers
,
Providence, RI
.
31.
Bhrawy
,
A. H.
,
2013
, “
A Jacobi-Gauss-Lobatto Collocation Method for Solving Generalized Fitzhugh-Nagumo Equation With Time-Dependent Coefficients
,”
Appl. Math. Comput.
,
222
, pp.
255
264
.10.1016/j.amc.2013.07.056
32.
Lee
,
B. G.
,
Park
,
Y.
, and
Yoo
,
J.
,
2002
, “
Application of Legendre-Bernstein Basis Transformations to Degree Elevation and Degree Reduction
,”
Comput. Aided Geom. Des.
,
19
(9), pp.
709
718
.10.1016/S0167-8396(02)00164-4
33.
Lu
,
L.
, and
Wang
,
G.
,
2008
, “
Application of Chebyshev II-Bernstein Basis Transformations to Degree Reduction of Bézier Curves
,”
J. Comput. Appl. Math.
,
221
(1), pp.
52
65
.10.1016/j.cam.2007.10.032
34.
Woźny
,
P.
, and
Lewanowicz
,
S.
,
2009
, “
Multi-Degree Reduction of Bézier Curves With Constraints, Using Dual Bernstein Basis Polynomials
,”
Comput. Aided Geom. Des.
,
26
(5), pp.
566
579
.10.1016/j.cagd.2009.01.006
35.
Zhou
,
L.
, and
Wang
,
G. J.
,
2009
, “
Constrained Multi-Degree Reduction of Bézier Surfaces Using Jacobi Polynomials
,”
Comput. Aided Geom. Des.
,
26
(3), pp.
259
270
.10.1016/j.cagd.2008.10.003
36.
Chen
,
G.-D.
, and
Wang
,
G.-J.
,
2002
, “
Optimal Multi-Degree Reduction of Bézier Curves With Constraints of Endpoints Continuity
,”
Comput. Aided Geom. Des.
,
21
(6), pp.
181
191
10.1016/S0167-8396(02)00093-6.
37.
Sunwoo
,
H.
,
2005
, “
Matrix Representation for Multi-Degree Reduction of Bézier Curves
,”
Comput. Aided Geom. Des.
,
22
(3), pp.
261
273
.10.1016/j.cagd.2004.12.002
38.
Chen
,
X.-D.
,
Ma
,
W.
, and
Paul
,
J.-C.
,
2011
, “
Multi-Degree Reduction of Bézier Curves Using Reparameterization
,”
Comput. Aided Des.
,
43
(2), pp.
161
169
.10.1016/j.cad.2010.11.001
You do not currently have access to this content.