This paper focuses on the use of virtual reality (VR) systems for teaching industrial assembly tasks and studies the influence of the interaction technology on the learning process. The experiment conducted follows a between-subjects design with 60 participants distributed in five groups. Four groups were trained on the target assembly task with a VR system, but each group used a different interaction technology: mouse-based, Phantom Omni® haptic, and two configurations of the Markerless Motion Capture (Mmocap) system (with 2D or 3D tracking of hands). The fifth group was trained with a video tutorial. A post-training test carried out the day after evaluated performance in the real task. The experiment studies the efficiency and effectiveness of each interaction technology for learning the task, taking in consideration both quantitative measures (such as training time, real task performance, evolution from the virtual task to real one), and qualitative data (user feedback from a questionnaire). Results show that there were no significant differences in the final performance among the five groups. However, users trained under mouse and 2D-tracking Mmocap systems took significantly less training time than the rest of the virtual modalities. This brings out two main outcomes: (1) the perception of collisions using haptics does not increase the learning transfer of procedural tasks demanding low motor skills and (2) Mmocap-based interactions can be valid for training this kind of tasks.

References

References
1.
Gavish
,
N.
,
Gutierrez Seco
,
T.
,
Webel
,
S.
,
Rodríguez
,
J.
, and
Tecchia
,
F.
,
2011
, “
Design Guidelines for the Development of Virtual Reality and Augmented Reality Training Systems for Maintenance and Assembly Tasks
,”
BIO Web of Conferences
,
Montpellier, France
, Dec. 15–16, Vol.
1
, pp.
29
33
.
2.
Yuviler-Gavish
,
N.
,
Krupenia
,
S.
, and
Gopher
,
D.
,
2013
, “
Task Analysis for Developing Maintenance and Assembly Virtual Reality Training Simulators
,”
Ergonomics in Design: The Quarterly of Human Factors Applications
,
21
(
1
), pp.
12
19
.10.1177/1064804612463214
3.
Pere
,
E.
,
Langrana
,
N.
,
Gomez
,
D.
, and
Burdea
,
G.
,
1996
, “
Virtual Mechanical Assembly on a PC-Based System
,”
ASME Design Engineering Technical Conferences and Computers and Information in Engineering
,
Irvine, CA
, Aug. 18–22.
4.
Brough
,
J. E.
,
Schwartz
,
M.
,
Gupta
,
S. K.
,
Anand
,
D. K.
,
Kavetsky
,
R.
, and
Petterson
,
R.
,
2007
, “
Towards the Development of a Virtual Environment-Based Training System for Mechanical Assembly Operations
,”
Virtual Reality
,
11
(
4
), pp.
189
206
.10.1007/s10055-007-0076-4
5.
Schwartz
,
M.
,
Gupta
,
S. K.
,
Anand
,
D. K.
, and
Kavetsky
,
R.
,
2007
, “
Virtual Mentor: A Step Towards Proactive User Monitoring and Assistance During Virtual Environment-Based Training
,”
Performance Metrics for Intelligent Systems (PerMIS) Workshop
,
Gaithersburg, MD
, Aug. 28–30, pp.
280
287
.
6.
Bhatti
,
A.
,
Nahavandi
,
S.
,
Khoo
,
Y. B.
,
Creighton
,
D.
,
Anticev
,
J.
, and
Zhou
,
M.
,
2009
, “
Haptically Enable Interactive Virtual Assembly Training System Development and Evaluation
,”
International Design Engineering Technical Conferences (SIMTECT) and Computers and Information in Engineering
,
Adelaide, Australia
, June 15–19, pp.
1
6
.
7.
Abate
,
A. F.
,
Guida
,
M.
,
Leoncini
,
P.
,
Nappi
,
M.
, and
Ricciardi
,
S.
,
2009
, “
A Haptic-Based Approach to Virtual Training for Aerospace Industry
,”
J. Vis. Lang. Comput.
,
20
(
5
), pp.
318
325
.10.1016/j.jvlc.2009.07.003
8.
Seth
,
A.
,
Su
,
H. J.
, and
Vance
,
J. M.
,
2005
, “
A Desktop Networked Haptic VR Interface for Mechanical Assembly
,”
Proceedings of IMECE
,
Orlando, FL
, Nov. 5–11, pp.
1
8
.
9.
Seth
,
A.
,
Su
,
H. J.
,
Vance
,
J. M.
, and
Fellow
,
A.
,
2008
, “
Development of a Dual-Handed Haptic Assembly System: Sharp
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
4
), p.
044502
.10.1115/1.3006306
10.
Poyade
,
M.
,
Reyes-Lecuona
,
A.
,
Leino
,
S.
,
Kiviranta
,
S.
,
Viciana-Abad
,
R.
, and
Lind
,
S.
,
2009
,
A High-Level Haptic Interface for Enhanced Interaction Within Virtools
, Virtual and Mixed Reality, Third International Conference, VMR 2009, Held as Part of HCI International, San Diego, CA, July 19–24, pp.
365
374
.10.1007/978-3-642-02771-0_41
11.
Xia
,
P.
,
Lopes
,
A. M.
,
Restivo
,
M. T.
, and
Yao
,
Y.
,
2012
, “
A New Type Haptics-Based Virtual Environment System for Assembly Training of Complex Products
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1–4
), pp.
379
396
.10.1007/s00170-011-3381-8
12.
Lu
,
X.
,
Qi
,
Y.
,
Zhou
,
T.
, and
Yao
,
X.
,
2012
, “
Constraint-Based Virtual Assembly Training System for Aircraft Engine
,” Advances in Computational Environment Science, Advances in Intelligent and Soft Computing,
Springer
,
Berlin
, Vol.
142
, pp.
105
112
.10.1007/978-3-642-27957-7_13
13.
Gupta
,
S. K.
,
Anand
,
D. K.
,
Brough
,
J. E.
,
Kavetsky
,
R. A.
,
Schwartz
,
M.
, and
Thakur
,
A.
,
2008
, “
A Survey of the Virtual Environments-Based Assembly Training Applications
,” Virtual Manufacturing Workshop, UMCP, Turin, Italy.
14.
Leino
,
S.
,
Lind
,
S.
,
Poyade
,
M.
,
Kiviranta
,
S.
,
Multanen
,
P.
,
Reyes-Lecuona
,
A.
,
Mäkiranta
,
A.
, and
Muhammad
,
A.
,
2009
, “
Enhanced Industrial Maintenance Work Task Planning by Using Virtual Engineering Tools and Haptic User Interfaces
,” Virtual and Mixed Reality, Vol.
5622
(Lecture Notes in Computer Science), Springer, Berlin, pp.
346
354
.
15.
Vo
,
D. M.
,
Vance
,
J. M.
, and
Marasinghe
,
M. G.
,
2009
, “
Assessment of Haptics-Based Interaction for Assembly Tasks in Virtual Reality
,”
Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Salt Lake City, UT
, Mar. 18–20, pp.
494
499
.
16.
Bloomfield
,
A.
,
Deng
,
Y.
,
Wampler
,
J.
,
Rondot
,
P.
,
Harth
,
D.
,
McManus
,
M.
, and
Badler
,
N. I.
,
2003
, “
A Taxonomy and Comparison of Haptic Actions for Disassembly Tasks
,”
IEEE Virtual Reality Conference (VR 2003)
,
Los Angeles, CA
, Mar. 22–26, pp.
225
231
.
17.
Adams
,
J. R.
,
Clowden
,
D.
, and
Hannaford
,
B.
,
2001
, “
Virtual Training for a Manual Assembly Task
,”
Haptics-e
,
2
(
2
), pp.
1
7
.
18.
Oren
,
M.
,
Carlson
,
P.
,
Gilbert
,
S.
, and
Vance
,
J. M.
,
2012
, “
Puzzle Assembly Training: Real World vs. Virtual Environment
,” IEEE Virtual Reality, Orange County, CA, Mar. 4–8, pp.
27
30
.
19.
Gavish
,
N.
,
Gutiérrez
,
T.
,
Webel
,
S.
,
Rodríguez
,
J.
,
Peveri
,
M.
,
Bockholt
,
U.
, and
Tecchia
,
F.
,
2013
, “
Evaluating Virtual Reality and Augmented Reality for Industrial Maintenance and Assembly Tasks
,”
Interact. Learn. Environ. J
, pp.
1
21
.10.1080/10494820.2013.815221
20.
Gutiérrez
,
T.
,
Rodríguez
,
J.
,
Vélaz
,
Y.
,
Casado
,
S.
,
Suescun
,
A.
, and
Sánchez
,
E. J.
,
2010
, “
IMA-VR: A Multimodal Virtual Training System for Skills Transfer in Industrial Maintenance and Assembly Tasks
,” IEEE 19th International Symposium on Robot and Human Interactive Communication (RO-MAN), Pisa, Italy, Sept. 13–15, pp.
428
433
.
21.
Unzueta
,
L.
,
2008
, “
Markerless Full-Body Human Motion Capture and Combined Motor Action Recognition for Human–Computer Interaction
,” Universidad de Navarra, Tecnun, San Sebastián, Spain.
22.
Isard
,
M.
, and
Blake
,
A.
,
1998
, “
Condensation—Conditional Density Propagation for Visual Tracking
,”
Int. J. Comput. Vision
,
29
(
1
), pp.
5
28
.10.1023/A:1008078328650
23.
Wren
,
C. R.
,
Azarbayejani
,
A.
,
Darrell
,
T.
, and
Pentland
,
A. P.
,
1997
, “
Pfinder: Real-Time Tracking of the Human Body
,”
IEEE Trans. Pattern Anal. Machine Intell.
,
19
(
7
), pp.
780
785
.10.1109/34.598236
24.
Schmidt
,
R. A.
, and
Lee
,
T. D.
,
2005
,
Motor Control and Learning: A Behavioral Emphasis
,
Human Kinetics Publishers, Inc.
,
Champaign, IL
.
You do not currently have access to this content.