In this study, we propose a hierarchical optimization-based approach for two-dimensional rectangular layout design problems. Decomposition-based optimization has been a key approach for complicated design problems in multidisciplinary design optimization (MDO), but the main focus has been design problems where the design variables are continuous. On the other hand, various approaches have been developed for layout design based on evolutionary algorithms, e.g., simulated annealing (SA) and genetic algorithms (GAs) which can handle its combinatorial nature in an effective manner. In the present study, we aim to introduce a new paradigm by combining decomposition-based optimization and evolutionary algorithms for solving complicated layout design problems. In this approach, the original layout problem is decomposed into the top-level layout problem and a set of sublevel layout problems, where the layouts obtained from the sublevel problems are used as components of the top-level problem. Since the preferable shapes of these components are unclear when the sublevel problems are solved, a set of Pareto optima are provided in the sublevel problems and these solutions are used as candidate components in the top-level problem. A computational design algorithm is developed based on this approach, which represents the layout topology with sequence pair and the shape of each subsystem or component with the aspect ratio, and they are optimized using GAs. The Pareto optimality of the sublevels is handled by multi-objective GAs, and a set of Pareto optima is generated simultaneously. The top-level and sublevel layout problems are coordinated via the exchange of preferable ranges for the shapes and layout. This approach was implemented and applied to an example problem to demonstrate its performance and capability.

References

References
1.
Jain
,
P.
,
Fenyes
,
P.
, and
Richter
,
R.
,
1992
, “
Optimal Blank Nesting Using Simulated Annealing
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
160
165
.10.1115/1.2916910
2.
Szykman
,
S.
, and
Cagan
,
J.
,
1995
, “
A Simulated Annealing-Based Approach to Three-Dimensional Component Packing
,”
ASME J. Mech. Des.
,
117
(
2A
), pp.
308
314
.10.1115/1.2826140
3.
Fujita
,
K.
,
Akagi
,
S.
, and
Shimazaki
,
S.
,
1996
, “
Optimal Space Partitioning Method Based on Rectangular Duals of Planar Graphs
,”
JSME Int. J., Ser. C
,
39
(
2
), pp.
378
386
.
4.
Murata
,
H.
,
Fujiyoshi
,
K.
,
Nakatake
,
S.
, and
Kajitani
,
Y.
,
1996
, “
VLSI Module Placement Based on Rectangle-Packing by the Sequence-Pair
,”
IEEE Trans. Comput. - Aided Des. Integr. Circuits Syst.
,
15
(
12
), pp.
1518
1524
.10.1109/43.552084
5.
Chen
,
J.
,
Zhu
,
W.
, and
Ali
,
M. M.
,
2011
, “
A Hybrid Simulated Annealing Algorithm for Nonslicing VLSI Floorplanning
,”
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
,
41
(
4
), pp.
544
553
.10.1109/TSMCC.2010.2066560
6.
Fujita
,
K.
,
Akagi
,
S.
, and
Hirokawa
,
N.
,
1993
, “
Hybrid Approach for Optimal Nesting Using a Genetic Algorithm and a Local Minimization Algorithm
,”
Proceedings of the ASME Design Automation Conference
, Vol. 65, pt. 1, pp.
477
484
.
7.
Nakaya
,
S.
,
Koide
,
T.
, and
Wakabayashi
,
S.
,
2000
, “
An Adaptive Genetic Algorithm for VLSI Floorplanning Based on Sequence-Pair
,”
Proceedings of the IEEE International Symposium on Circuits and Systems
, Geneva, Vol.
3
, pp.
65
68
.
8.
Yin
,
S.
, and
Cagan
,
J.
,
2000
. “
An Extended Pattern Search Algorithm for Three-Dimensional Component Layout
,”
ASME J. Mech. Des.,
,
122
(
1
), pp.
102
108
.10.1115/1.533550
9.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
,
2007
. “
Objective Function Effect Based Pattern Search: An Implementation for 3D Component Layout
,”
ASME J. Mech. Des.,
,
129
(
3
), pp.
255
265
.10.1115/1.2406096
10.
Grignon
,
P. M.
, and
Fadel
,
G. M.
,
2004
, “
A GA Based Configuration Design Optimization Method
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
6
15
.10.1115/1.1637656
11.
Dowsland
,
K. A.
,
Herbert
,
E. A.
,
Kendall
,
G.
, and
Burke
,
E.
,
2006
, “
Using Tree Search Bounds to Enhance a Genetic Algorithm Approach to Two Rectangle Packing Problems
,”
Eur. J. Oper. Res.
,
168
(
2
), pp.
390
402
.10.1016/j.ejor.2004.04.030
12.
Balling
,
R. J.
, and
Sobieszczanski-Sobieski
,
J.
,
1996
, “
Optimization of Coupled Systems: A Critical Overview of Approaches
,”
AIAA J.
,
34
(
1
), pp.
6
17
.10.2514/3.13015
13.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
,
1997
, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
,
14
(
1
), pp.
1
23
.10.1007/BF01197554
14.
Kim
,
H. M.
,
Jiang
,
T.
,
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
.10.1115/1.1582501
15.
Dong
,
H.
,
Fadel
,
G. M.
, and
Blouin
,
V. Y.
,
2006
, “
Vehicle Component Layout With Shape Morphing - an Intial Study
,”
Proceedings of the IDETC/CIE 2006, ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
ASME
Paper No. DETC2006-99272.DETC2006-99272
16.
Tiwari
,
S.
,
Fadel
,
G.
, and
Fenyes
,
P.
,
2008
, “
A Fast and Efficient Compact Packing Algorithm for Free-Form Objects
,”
Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, New York,
ASME
Paper No. DETC2008-50097.DETC2008-50097
17.
Jacquenot
,
G.
,
Bennis
,
F.
,
Maisonnueve
,
J. J.
, and
Wenger
,
P.
,
2009
, “
2D Multi-Objective Placement Algorithm for Free-Form Components
,”
Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, San Diego, CA, Aug. 30–Sep. 2,
ASME
Paper No. DETC2009-87603.DETC2009-87603
18.
Fujita
,
K.
,
Nakatogawa
,
T.
, and
Akagi
,
S.
,
1994
, “
Hybrid Approach to Plant Layout Design Using Constraint-Directed Search and an Optimization Technique
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1026
1033
.10.1115/1.2919483
19.
Cagan
,
J.
,
Shimada
,
K.
, and
Yin
,
S.
,
2002
, “
A Survey of Computational Approaches to Three-Dimensional Layout Problems
,”
Computer-Aided Des.
,
34
(
8
), pp.
597
611
.10.1016/S0010-4485(01)00109-9
20.
Simon
,
H. A.
,
1996
,
The Sciences of the Artificial
,
3rd ed.
,
MIT Press
,
Cambridge, MA
.
21.
Cagan
,
J.
,
Degentesh
,
D.
, and
Yin
,
S.
,
1998
, “
A Simulated Annealing-Based Algorithm Using Hierarchical Models for General Three-Dimensional Component Layout
,”
Computer-Aided Des.
,
30
(
10
), pp.
781
790
.10.1016/S0010-4485(98)00036-0
22.
Haftka
,
R. T.
, and
Watson
,
L. T.
,
2006
, “
Decomposition Theory for Multidisciplinary Design Optimization Problems With Mixed Integer Quasiseparable Subsystems
,”
Optimiz. Eng.
,
7
(
2
), pp.
135
149
.10.1007/s11081-006-6836-2
23.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
,
1993
, “
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
,”
Proceedings of the 5th International Conference on Genetic Algorithms
, Urbana-Champaign, IL, pp.
416
423
.
24.
Watanabe
,
S.
,
Hiroyasu
,
T.
, and
Miki
,
M.
,
2002
, “
Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems
,”
Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning
, Singapore, pp.
198
202
.
25.
Fujiyoshi
,
K.
, and
Murata
,
H.
,
2000
, “
Arbitrary Convex and Concave Rectilinear Block Packing Using Sequence-Pair
,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
,
19
(
2
), pp.
224
233
.10.1109/43.828551
26.
Xiaoping
,
T.
, and
Wong
,
D. F.
,
2001
, “
FAST-SP: A Fast Algorithm for Block Placement Based on Sequence Pair
,”
Proceedings of the Asia and South Pacific Design Automation Conference 2001
, IEEE, Yokohama, pp.
521
526
.
27.
Kodama
,
C.
, and
Fujiyoshi
,
K.
,
2003
, “
Selected Sequence-Pair: An Efficient Decodable Packing Representation in Linear Time Using Sequence-Pair
,”
Proceedings of the Asia and South Pacific Design Automation Conference
, IEEE, Kitakyushu, pp.
331
337
.
28.
Lai
,
J.
,
Lin
,
M. S.
,
Wang
,
T. C.
, and
Wang
,
L. C.
,
2001
, “
Modular Placement With Boundary Constraints Using the Sequence-Pair Representation
,”
Proceedings of the Asia and South Pacific Design Automation Conference
, Yokohama, pp.
515
520
.
You do not currently have access to this content.