In this paper, a novel path planning approach is proposed to generate porous structures with internal features. The interconnected and continuous deposition path is designed to control the internal material composition in a functionally graded manner. The proposed layer-based algorithmic solutions generate a bilayer pattern of zigzag and spiral toolpath consecutively to construct heterogeneous three-dimensional (3D) objects. The proposed strategy relies on constructing Voronoi diagrams for all bounding curves in each layer to decompose the geometric domain and discretizing the associated Voronoi regions with ruling lines between the boundaries of the associated Voronoi regions. To avoid interference among ruling lines, reorientation and relaxation techniques are introduced to establish matching for continuous zigzag path planning. In addition, arc fitting is used to reduce over-deposition, allowing nonstop deposition at sharp turns. Layer-by-layer deposition progresses through consecutive layers of a ruling-line-based zigzag pattern followed by a spiral path deposition. A biarc fitting technique is employed through isovalues of ruling lines to generate G1 continuity along the spiral deposition path plan. Functionally graded material properties are then mapped based on a parametric distance-based weighting technique. The proposed approach enables elimination or minimization of over-deposition of materials, nonuniformity on printed strands and discontinuities on the toolpath, which are shortcomings of traditional zigzag-based toolpath plan in additive manufacturing (AM). In addition, it provides a practical path for printing functionally graded materials.

References

References
1.
Khoda
,
A.
,
Ozbolat
,
I.
, and
Koc
,
B.
,
2011
, “
Engineered Tissue Scaffolds with Variational Porous Architecture
,”
ASME J. Biomech. Eng.
,
133
(
1
), p.
011001
.10.1115/1.4002933
2.
Ozbolat
,
I. T.
,
Marchany
,
M.
,
Gardella
,
J. A. Jr.
,
Bright
,
F. V.
,
Cartwright
,
A. N.
,
Hard
,
R.
,
Hicks
,
W. L. Jr.
, and
Koc
,
B.
,
2009
, “
Feature Based Bio-Modeling of Micro-patterned Structures for Tissue Engineering
,”
Comput.-Aided Des. Appl.
,
6
(
5
), pp.
661
671
.
3.
Khoda
,
A. K. M. B.
,
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2013
, “
Designing Heterogeneous Porous Tissue Scaffolds for Bio-additive Processes
,”
Comput.-Aided Des.
,
45
(12), pp.
1507
1523
.10.1016/j.cad.2013.07.003
4.
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2010
, “
Modeling of Spatially Controlled Bio-Molecules in Three-Dimensional Porous Alginate Structures
,”
ASME J. Med. Devices
,
4
(
4
), p.
041003
.10.1115/1.4002612
5.
Hilfer
,
R.
, and
Manwart
,
C.
,
2001
, “
Permeability and Conductivity for Reconstruction Models of Porous Media
,”
Phys. Rev. E
,
64
(
2
), p.
021304
.10.1103/PhysRevE.64.021304
6.
Thakur
,
M.
,
Isaacson
,
M.
,
Sinsabaugh
,
S. L.
,
Wong
,
M. S.
, and
Biswal
,
S. L.
,
2012
, “
Gold-Coated Porous Silicon Films as Anodes for Lithium Ion Batteries
,”
J. Power Source
,
205
, pp.
426
432
.10.1016/j.jpowsour.2012.01.058
7.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2010
, “
A Simple and Effective Geometric Representation for Irregular Porous Structure Modeling
,”
Comput.-Aided Des.
,
42
(
10
), pp.
930
941
.10.1016/j.cad.2010.06.006
8.
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2011
, “
Multi-Function Based 3D Heterogeneous Wound Scaffolds for Improved Wound Healing
,”
Comput.-Aided Des. Appl.
,
8
(
1
), pp.
43
57
.10.3722/cadaps.2011.43-57
9.
Cai
,
D.
,
Shi
,
Y.
,
Zhang
,
L.
, and
Huang
,
S.
,
2007
, “
The Two-Dimension Hollowing Algorithm for Rapid Prototyping Technology
,”
Int. J. Adv. Manuf. Technol.
,
33
(
7–8
), pp.
738
745
.10.1007/s00170-006-0513-7
10.
Khoda
,
A.
,
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2011
, “
A Functionally Gradient Variational Porosity Architecture for Hollowed Scaffolds Fabrication
,”
Biofabrication
,
3
(
3
), pp.
1
15
.10.1088/1758-5082/3/3/034106
11.
Qui
,
D.
, and
Langrana
,
N. A.
,
2002
, “
Void Eliminating Toolpath for Extrusion-Based Multi-Material Layered Manufacturing
,”
Rapid Prototyping J.
,
8
(
1
), pp.
38
45
.10.1108/13552540210413293
12.
Xu
,
A.
, and
Shaw
,
L. L.
,
2005
, “
Equal Distance Offset Approach to Representing and Process Planning for Solid Freeform Fabrication of Functionally Graded Materials
,”
Comput.-Aided Des.
,
37
(
12
), pp.
1308
1318
.10.1016/j.cad.2005.01.005
13.
Kim
,
H. C.
,
Lee
,
S. H.
, and
Yang
,
D. Y.
,
2009
, “
Toolpath Planning Algorithm for the Ablation Process Using Energy Sources
,”
Comput.-Aided Des.
,
41
(
1
), pp.
59
64
.10.1016/j.cad.2008.12.005
14.
Choi
,
S. H.
, and
Zhu
,
W. K.
,
2010
, “
A Dynamic Priority-Based Approach to Concurrent Toolpath Planning for Multi-Material Layered Manufacturing
,”
Comput.-Aided Des.
,
42
(
12
), pp.
1095
1107
.10.1016/j.cad.2010.07.004
15.
Zhu
,
W. M.
, and
Yu
,
K. M.
,
2001
, “
Dexel-Based Direct Slicing of Multi-Material Assemblies
,”
Int. J. Adv. Manuf. Technol.
,
18
(
4
), pp.
285
302
.10.1007/s001700170069
16.
Chiu
,
W. K.
, and
Tan
,
S. T.
,
1998
, “
Using Dexels to Make Hollow Models for Rapid Prototyping
,”
Comput.-Aided Des.
,
30
(
7
), pp.
539
547
.10.1016/S0010-4485(98)00008-6
17.
Shah
,
J. J.
, and
Mantyla
,
M.
,
1995
,
Parametric and Feature-Based CAD/CAM
,
Wiley
,
New York
.
18.
Held
,
M.
,
1998
, “
Voronoi Diagrams and Offset Curves of Curvilinear Polygons
,”
Comput.-Aided Des.
,
30
(
4
), pp.
287
300
.10.1016/S0010-4485(97)00071-7
19.
Held
,
M.
, and
Huber
,
S.
,
2009
, “
Topology-Oriented Incremental Computation of Voronoi Diagrams of Circular Arcs and Straight-Line Segments
,”
Comput.-Aided Des.
,
41
(
5
), pp.
327
338
.10.1016/j.cad.2008.08.004
20.
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2011
, “
Multi-Directional Blending for Heterogeneous Objects
,”
Comput.-Aided Des.
,
43
(
8
), pp.
863
875
.10.1016/j.cad.2011.04.002
21.
Samanta
,
K.
,
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2014
, “
Optimized Normal and Distance Matching for Heterogeneous Object Modeling
,”
Comput. Ind. Eng.
,
69
, pp.
1
11
.10.1016/j.cie.2013.12.010
22.
Samanta
,
K.
, and
Koc
,
B.
,
2008
,
Feature-Based Material Blending for Heterogeneous Object Modeling, Heterogeneous Objects Modeling and Applications
,
Springer
,
Berlin, Germany
, pp.
142
166
.
23.
Bey-Oueslati
,
R.
,
Palm
,
S. J.
,
Therriault
,
D.
, and
Martel
,
S.
,
2008
, “
High Speed Direct-Write for Rapid Fabrication of Three-Dimensional Microfluidic Devices
,”
Int. J. Heat Technol.
,
26
(
1
), pp.
125
131
.
24.
Lasemi
,
A.
,
Xue
,
D.
, and
Gu
,
P.
,
2010
, “
Recent Development in CNC Machining of Freeform Surfaces: A State-of-the-Art Review
,”
Comput.-Aided Des.
,
42
(
7
), pp.
641
654
.10.1016/j.cad.2010.04.002
25.
RobertMcNeel&Associates,
2007
,
Rhinoceros 4.0
, Seattle, WA.
26.
Ozbolat
,
I. T.
,
Chen
,
H.
, and
Yu
,
Y.
,
2014
, “
Development of `Multi-arm Bioprinter' for Hybrid Biofabrication of Tissue Engineering Constructs
,”
Rob. Comput.-Integr. Manuf.
,
30
(3), pp.
295
304
.10.1016/j.rcim.2013.10.005
27.
Meek
,
D. S.
, and
Walton
,
D. J.
,
2009
, “
A Two-Point Hermite Interpolating Family of Spirals
,”
J. Comput. Appl. Math.
,
223
(
1
), pp.
97
113
.10.1016/j.cam.2007.12.027
28.
Bolton
,
K. M.
,
1975
, “
Biarc Curves
,”
Comput.-Aided Des.
,
7
(
2
), pp.
89
92
.10.1016/0010-4485(75)90086-X
29.
Schönherr
,
J.
,
1993
, “
Smooth Biarc Curves
,”
Comput.-Aided Des.
,
25
(
6
), pp.
365
370
.10.1016/0010-4485(93)90031-I
30.
Park
,
H.
,
2004
, “
Error-Bounded Biarc Approximation of Planar Curves
,”
Comput.-Aided Des.
,
36
(
12
), pp.
1241
1251
.10.1016/j.cad.2004.01.001
31.
Meek
,
D. S.
, and
Walton
,
D. J.
,
1992
, “
Approximation of Discrete Data by G1 Arc Splines
,”
Comput.-Aided Des.
,
24
(
6
), pp.
301
306
.10.1016/0010-4485(92)90047-E
32.
Koc
,
B.
,
Ma
,
Y.
, and
Lee
,
Y.-S.
,
2000
, “
Smoothing STL Files by Max-Fit Biarc Curves for Rapid Prototyping
,”
Rapid Prototyping J.
,
6
(
3
), pp.
86
204
.10.1108/13552540010337065
33.
Alt
,
H.
, and
Guibas
,
L.
,
1996
, “
Discrete Geometric Shapes: Matching, Interpolation, and Approximation, A Survey
” Inst. f. Informatik, Freie Universitat Berlin, in: J. Urrutia, J.-R. Sack, eds.,
Handbook for Computational Geometry
,
North-Holland, Amsterdam
.
34.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2007
, “
Heterogeneous Object Modeling: A Review
,”
Comput.-Aided Des.
,
39
(
4
), pp.
284
301
.10.1016/j.cad.2006.12.007
35.
Wei
,
C.
,
Cai
,
L.
,
Sonawane
,
B.
,
Wang
,
S.
, and
Dong
,
J.
,
2012
, “
High-Precision Flexible Fabrication of Tissue Engineering Scaffolds Using Distinct Polymers
,”
Biofabrication
,
4
(
2
), p.
025009
.10.1088/1758-5082/4/2/025009
You do not currently have access to this content.