Most heterogeneous computer aided design (CAD) representations in the literature represent materials using a volume fraction vector, which may not by physically realizable or meaningful. In contrast, the multiscale, heterogeneous CAD representation presented here models materials using their microstructure. For the specific metal alloys of interest in this work, the material model is a probabilistic model of grain characteristics, represented as cumulative distribution functions (CDFs). Several microstructure reconstruction algorithms are presented that enable different alloy grain structures to be reconstructed in a part model. Reconstructions can be performed at any desired size scale, illustrating the multiscale capability of the representation. A part rendering algorithm is presented for displaying parts with their material microstructures. The multiscale, heterogeneous CAD representation is demonstrated on two Inconel alloys and is shown to be capable of faithfully reconstructing part representations consistent with the probabilistic grain models.

References

References
1.
Bourell
,
D. L.
,
Leu
,
M.
, and
Rosen
,
D. W.
,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,”
Final Report From NSF and ONR Workshop, University of Texas at Austin
,
Austin, TX
, pp. 11–15.
2.
Olson
,
G. B.
,
1997
, “
Computational Design of Hierarchically Structured Materials
,”
Science
,
277
(
5330
), pp.
1237
1242
.10.1126/science.277.5330.1237
3.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer
,
Berlin, Germany
.
4.
Bhashyam
,
S.
,
Shin
,
K. H.
, and
Dutta
,
D.
,
2000
, “
An Integrated CAD System for Design of Heterogeneous Objects
,”
Rapid Prototyping J.
,
6
(
2
), pp.
119
135
.10.1108/13552540010323547
5.
Koenig
,
O.
, and
Fadel
,
G.
,
1999
, “
Application of Genetic Algorithms in the Design of Multi-Material Structures Manufactured in Rapid Prototyping
,”
Proceedings of Solid Freeform Fabrication Symposium
,
Austin, TX,
Aug. 9–11, pp.
209
217
.
6.
Wu
,
Z.
,
Soon
,
S. H.
, and
Feng
,
L.
,
1999
, “
NURBS-Based Volume Modeling
,”
International Workshop on Volume Graphics
,
Swansea, UK
, March 24–25, pp.
321
330
.
7.
Adzhiev
,
V.
,
Kartasheva
,
E.
,
Kunii
,
T.
,
Pasko
,
A.
, and
Schmitt
,
B.
,
2002
, “
Hybrid Cellular-Functional Modeling of Heterogeneous Objects
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
4
), pp.
312
322
.10.1115/1.1559580
8.
Kumar
,
V.
,
Burns
,
D.
,
Dutta
,
D.
, and
Hoffmann
,
C.
,
1999
, “
A Framework for Object Modeling
,”
Comput. Aided Des.
,
31
(
9
), pp.
541
556
.10.1016/S0010-4485(99)00051-2
9.
Qian
,
X.
, and
Dutta
,
D.
,
2003
, “
Physics-Based Modeling for Heterogeneous Objects
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
416
427
.10.1115/1.1582877
10.
Liu
,
H.
,
Maekawa
,
T.
,
Patrikalakis
,
N. M.
,
Sachs
,
E. M.
, and
Cho
,
W.
,
2003
, “
Methods for Feature-Based Design of Heterogeneous Solids
,”
Comput. Aided Des.
,
36
(
12
), pp.
1141
1159
.10.1016/j.cad.2003.11.001
11.
Tan
,
S. T.
, and
Siu
,
Y. K.
,
2002
, “
Source-based Heterogeneous Solid Modeling
,”
Comput. Aided Des.
,
34
(
1
), pp.
41
55
.10.1016/S0010-4485(01)
12.
Martin
,
T.
,
Cohen
,
E.
, and
Kirby
,
R. M.
,
2009
, “
Volumetric Parameterization and Trivariate B-Spline Fitting Using Harmonic Functions
,”
Comput. Aided Geom. Des.
,
26
(
6
), pp.
648
664
.10.1016/j.cagd.2008.09.008
13.
Ganter
,
M.
,
Wahlborg
,
J.
,
Schwartz
,
D.
, and
Storti
,
D.
,
2002
, “
H-ISM: An Implementation of Heterogeneous Implicit Solid Modeling
,”
ASME
Paper No. DETC2002/DAC-34139.10.1115/DETC2002/DAC-34139
14.
Rvachev
,
V. L.
,
Sheiko
,
T. I.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
,
2001
, “
Transfinite Interpolation Over Implicitly Defined Sets
,”
Comput. Aided Geom. Des.
,
18
(
3
), pp.
195
220
.10.1016/S0167-8396(01)00015-2
15.
Mason
,
T. A.
, and
Adams
,
B. L.
,
1999
, “
Use of Microstructural Statistics in Predicting Polycrystalline Material Properties
,”
Metall. Mater. Trans. A
,
30
(
4
), pp.
969
979
.10.1007/s11661-999-0150-5
16.
Saheli
,
G.
,
Garmestani
,
H.
, and
Adams
,
B. L.
,
2004
, “
Microstructure Design of a Two Phase Composite Using Two-Point Correlation Functions
,”
J. Comput. Aided Mater. Des.
,
11
(
2–3
), pp.
103
115
.10.1007/s10820-005-3164-3
17.
Kalidindi
,
S. R.
, and
Houskamp
,
J. R.
,
2007
, “
Application of the Spectral Methods of Microstructure Design to Continuous Fiber-Reinforced Composites
,”
J. Compos. Mater.
,
41
(
8
), pp.
909
930
.10.1177/0021998306067256
18.
Shenoy
,
M.
,
Tjiptowidjojo
,
Y.
, and
McDowell
,
D.
,
2008
, “
Microstructure-Sensitive Modeling of Polycrystalline IN100
,”
Int. J. Plast.
,
24
(
10
), pp.
1694
1730
.10.1016/j.ijplas.2008.01.001
19.
Brahme
,
A.
,
Alvi
,
M. H.
,
Saylor
,
D.
,
Fridy
,
J.
, and
Rollett
,
A. D.
,
2006
, “
3D Reconstruction of Microstructure in a Commercially Purity Aluminum
,”
Scr. Mater.
,
55
(
1
), pp.
75
80
.10.1016/j.scriptamat.2006.02.017
20.
Zheng
,
X.
, and
Palffy-Muhoray
,
P.
,
2007
, “
Distance of Closest Approach of Two Arbitrary Hard Ellipses in Two Dimensions
,”
Phys. Rev. E
,
75
(
6.1
),
p
. 061709.10.1103/PhysRevE.75.061.061709
21.
Rosen
,
D. W.
,
Jeong
,
N.
, and
Wang
,
Y.
,
2013
, “
A Method for Reverse Engineering of Material Microstructure for Heterogeneous CAD
,”
Comput. Aided Des.
,
45
(
7
), pp.
1068
1078
.10.1016/j.cad.2013.01.004
22.
Li
,
D.
,
Guo
,
Q.
,
Guo
,
S.
,
Peng
,
H.
, and
Wu
,
Z.
,
2011
, “
The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy
,”
Mater. Des.
,
32
(
2
), pp.
696
705
.10.1016/j.matdes.2010.07.040
You do not currently have access to this content.