In automotive industry, virtual tools and methods are becoming increasingly important to ensure robust solutions as early as possible in the development processes. Today, techniques exist that combine Monte Carlo simulations (MCS) with finite element analysis (FEA) to capture the part's nonrigid geometric behavior when predicting variation in a critical dimension of a subassembly or product. A direct combination of MCS with full FEA requires high computational power and the calculations tend to be very time consuming. To overcome this problem, the method of influence coefficients (MIC) was proposed by Liu and Hu in the late 1990s. This well-known technique has since then been used in several studies of nonrigid assemblies and sensitivity analysis of the geometric fault propagation in multistation assembly processes. In detailed studies of the resulting subassemblies and levels of variation, functionality for color plots and the ability to study the geometry in arbitrary sections are desired to facilitate the analysis of the simulation results. However, when including all part nodes in combination with methods for contact and spot weld sequence modeling, the required sensitivity matrices grow exponentially. In this paper, a method is proposed, describing how traditional MIC calculations can be combined with a separate detailed subassembly analysis model, keeping the model sizes down and thus facilitating detailed studies of larger assembly structures.

References

References
1.
Hu
,
S. J.
, and
Koren
,
Y.
,
1997
, “
Stream-of-Variation Theory for Automotive Body Assembly
,”
CIRP Ann.
,
46
(
1
), pp.
1
6
.10.1016/S0007-8506(07)60763-X
2.
Hu
,
S. J.
, and
Camelio
,
J.
,
2006
, “
Modeling and Control of Compliant Assembly Systems
”,
CIRP Ann.
,
55
, pp.
19
22
.10.1016/S0007-8506(07)60357-6
3.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Carlsson
,
J.
,
2006
, “
Virtual Geometry Assurance for Effective Product Realization
,”
1st Nordic Conference on Product Lifecycle Management—NordPLM'06
,
Göteborg, Sweden
.
4.
Hoffenson
,
S.
,
Dagman
,
A.
, and
Söderberg
,
R.
,
2013
, “
A Multi-Objective Tolerance Optimization Approach for Economic, and Social Sustainability
,”
Proceedings of the 20th CIRP International Conference on Life Cycle Engineering (LCE)
.
5.
Maropoulos
,
P. G.
, and
Ceglarek
,
D.
,
2010
, “
Design Verification and Validation in Product Lifecycle
,”
CIRP Ann.
,
59
(
2
), pp.
740
759
.10.1016/j.cirp.2010.05.005
6.
Ullman
,
D. G.
,
2003
,
The Mechanical Design Process
,
McGraw-Hill Higher Education
,
New York
.
7.
Nair
,
V. N.
,
Abraham
,
B.
,
Mackay
,
J.
,
Box
,
G.
,
Kacker
,
R. N.
,
Lorenzen
,
T. J.
,
Lucas
,
J. M.
,
Myers
,
R. H.
,
Vining
,
G. G.
,
Nelder
,
J. A.
,
Phadke
,
M. S.
,
Sacks
,
J.
,
Welch
,
W. J.
,
Shoemaker
,
A. C.
,
Tsui
,
K. L.
,
Taguchi
,
S.
, and
Wu
,
C. F. J.
,
1992
, “
Taguchi Parameter Design—A Panel Discussion
,”
Technometrics
,
34
(
2
), pp.
127
161
.10.1080/00401706.1992.10484904
8.
Phadke
,
M. S.
,
1989
,
Quality Engineering Using Robust Design
,
P T R Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
9.
Segeborn
,
J.
,
2011
, “
Cost-Effective Sheet Metal Assembly by Automatic Path Planning and Line Balancing, Integrated With Dimensional Variation Analysis
,” Ph.D. thesis, Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden.
10.
Dahlström
,
S.
,
2005
, “
Variation Simulation of Sheet Metal Assemblies for Geometrical Quality, Parameter Modeling and Analysis
,” Ph.D. thesis, Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden.
11.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.10.1115/1.2831115
12.
Hu
,
S. J.
, and
Wu
,
S. M.
,
1992
, “
Identifying Sources of Variation in Automobile Body Assembly Using Principal Component Analysis
,”
Trans. NAMRI/SME
,
20
, pp.
311
316
.
13.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2003
, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
,
125
, pp.
673
681
.10.1115/1.1631574
14.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Marin
,
S. P.
,
2004
, “
Compliant Assembly Variation Analysis Using Component Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
,
126
, pp.
355
360
.10.1115/1.1644553
15.
Liu
,
Y. G.
, and
Hu
,
S. J.
,
2005
, “
Assembly Fixture Fault Diagnosis Using Designated Component Analysis
,”
ASME J. Manuf. Sci. Eng.
,
127
(2), pp.
358
368
.10.1115/1.1852572
16.
Camelio
,
J. A.
, and
Yim
,
H.
,
2006
, “
Identification of Dimensional Variation Patterns on Compliant Assemblies
,”
J. Manuf. Syst.
,
25
, pp.
65
76
.10.1016/S0278-6125(07)00006-4
17.
Camelio
,
J. A.
, and
Hu
,
S. J.
,
2004
, “
Multiple Fault Diagnosis for Sheet Metal Fixtures Using Designated Component Analysis
,”
ASME J. Manuf. Sci. Eng.
,
126
, pp.
91
97
.10.1115/1.1643076
18.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
, pp.
615
622
.10.1115/1.2714570
19.
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2009
, “
Tolerance Simulation of Compliant Sheet Metal Assemblies Using Automatic Node-Based Contact Detection
,”
ASME
IMECE 2008: New Developments in Simulation Methods and Software for Engineering Applications
, Boston, MA, Oct. 31–Nov. 6, Vol. 14, pp.
35
44
.10.1115/IMECE2008-66344
20.
Ungemach
,
G.
, and
Mantwill
,
F.
,
2009
, “
Efficient Consideration of Contact in Compliant Assembly Variation Analysis
,”
ASME J. Manuf. Sci. Eng.
,
131
, p.
011005
.10.1115/1.3046133
21.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2010
, “
Strategies for Optimization of Spot Welding Sequence With Respect to Geometrical Variation in Sheet Metal Assemblies
,”
ASME
International Mechanical Engineering Congress and Exposition
,
Vancouver, Canada
, Nov. 12–18, Vol. 3, pp.
569
577
.10.1115/IMECE2010-38471
22.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2010
, “
Variation Simulation of Spot Welding Sequence for Sheet Metal Assemblies
,” NordDesign 2010, Göteborg, Sweden, pp.
519
528
.
23.
Matuszyk
,
T. I.
,
Cardew-Hall
,
M. J.
, and
Rolfe
,
B. F.
,
2010
, “
The Kernel Density Estimate/Point Distribution Model (KDE-PDM) for Statistical Shape Modeling of Automotive Stampings and Assemblies
,”
Robot. Comput. Integr. Manuf.
,
26
, pp.
370
380
.10.1016/j.rcim.2009.11.015
24.
Lindau
,
B.
,
Lindkvist
,
L.
,
Andersson
,
A.
, and
Söderberg
,
R.
,
2013
, “
Statistical Shape Modeling in Virtual Assembly Using PCA-Technique
,”
J. Manuf. Syst.
,
32
, pp.
456
463
.10.1016/j.jmsy.2013.02.002
25.
Jolliffe
,
I. T.
,
2002
,
Principal Component Analysis
,
2nd ed
,
Springer
,
New York
.
26.
Izenman
,
A.
,
1991
, “
Recent Developments in Nonparametric Density-Estimation
,”
J. Am. Stat. Assoc.
,
86
(
413
), pp.
205
224
.
27.
Martinez
,
W. L.
, and
Martinez
,
A. R.
,
2008
,
Computational Statistics Handbook With MATLAB®
,
2nd ed.
(
Computer Science and Data Analysis Series), Chapman & Hall/CRC
,
London
.
28.
RD&T Technology AB
,
2011
, “
RD&T Software Manual
,” Mölndal, Sweden.
You do not currently have access to this content.