Image reconstruction is the transformation process from a reduced-order representation to the original image pixel form. In materials characterization, it can be utilized as a method to retrieve material composition information. In our previous work, a surfacelet transform was developed to efficiently represent boundary information in material images with surfacelet coefficients. In this paper, new constrained-conjugate-gradient based image reconstruction methods are proposed as the inverse surfacelet transform. With geometric constraints on boundaries and internal distributions of materials, the proposed methods are able to reconstruct material images from surfacelet coefficients as either lossy or lossless compressions. The results between the proposed and other optimization methods for solving the least-square error inverse problems are compared.

References

References
1.
Radon
,
J.
,
1986
, “
On the Determination of Functions from their Integral Values Along Certain Manifolds
,”
IEEE Trans. Med. Imaging
,
5
(
2
), pp.
170
176
.10.1109/TMI.1986.4307775
2.
Hough
,
P. V. C.
,
1959
, “
Machine Analysis of Bubble Chamber Pictures
,”
Proceeding of International Conference High Energy Accelerators and Instrumentation
.
3.
Duda
,
R. O.
, and
Hart
,
P. E.
,
1972
, “
Use of the Hough Transformation to Detect Lines and Curves in Pictures
,”
Comm. ACM
,
15
, pp.
11
15
.10.1145/361237.361242
4.
Wang
,
Y.
, and
Rosen
,
D. W.
,
2010
, “
Multiscale Heterogeneous Modeling With Surfacelets
,”
Comput.-Aided Des. Appl.
,
7
, pp.
759
776
.
5.
Tam
,
K. C.
, and
Perez-Mendez
,
V.
,
1981
, “
Tomographical Imaging With Limited-Angle Input
,”
J. Opt. Soc. Amer.
,
71
(
5
), pp.
582
592
.10.1364/JOSA.71.000582
6.
Kawata
,
S.
, and
Nalcioglu
,
O.
,
1985
, “
Constrained Iterative Reconstruction by the Conjugate Gradient Method
,”
IEEE Trans. Med. Imaging
,
4
, pp.
65
71
.10.1109/TMI.1985.4307698
7.
Bracewell
,
R. N.
,
1990
, “
Numerical Transforms
,”
Science
,
248
(
4956
), pp.
697
704
.10.1126/science.248.4956.697
8.
Leavers
,
V. F.
, and
Boyce
,
J. F.
,
1987
, “
The Radon Transform and Its Application to Shape Parametrization in Machine Vision
,”
Image Vision Comput.
,
5
(
2
), pp.
161
166
.10.1016/0262-8856(87)90044-8
9.
Jeong
,
N.
,
Rosen
,
D. W.
, and
Wang
,
Y.
,
2013
, “
A Comparison of Surfacelet-Based Method for Recognizing Linear Geometric Features in Material Microstructure
,”
Proceeding of IDETC2013
, Portland, Oregon, August 4–7, DETC2013-13370.
10.
Rosen
,
D. W.
,
Jeong
,
N.
, and
Wang
,
Y.
,
2013
, “
A Method for Reverse Engineering of Material Microstructure for Heterogeneous CAD
,”
Comput.-Aided Des.
,
45
(
7
), pp.
1068
–1078
10.1016/j.cad.2013.01.004
11.
Ballard
,
D. H.
,
1981
, “
Generalizing the Hough Transform to Detect Arbitrary Shapes
,”
Pattern Recognit.
,
13
(
2
), pp.
111
122
.10.1016/0031-3203(81)90009-1
12.
Niezgoda
,
S. R.
, and
Kalidindi
,
S. R.
,
2010
, “
Applications of the Phase-Coded Generalized Hough Transform to Feature Detection, Analysis, and Segmentation of Digital Microstructures
,”
Comput., Mater., Contin.
,
14
(
2
), pp.
79
98
.
13.
Donoho
,
D.
,
1999
, “
Wedgelets: Nearly Minimax Estimation of Edges
,”
Ann. Stat.
,
27
(
3
), pp.
895
897
.10.1214/aos/1018031261
14.
Candèsand
,
E. J.
, and
Donoho
,
D. L.
,
2002
, “
Recovering Edges in Ill-Posed Inverse Problems: Optimality of Curvelet Frames
,”
Ann. Stat.
,
30
(
3
), pp.
784
842
.10.1214/aos/1028674842
15.
Candès
,
E. J.
,
1998
, “
Ridgelets: Theory and Applications
,” Ph.D. dissertation, Stanford University, Stanford, CA.
16.
Do
,
M. N.
, and
Vetterli
,
M.
,
2005
, “
The Contourlet Transform: An Efficient Directional Multiresolution Image Representation
,”
IEEE Trans. Image Process.
,
14
(
12
), pp.
2091
2106
.10.1109/TIP.2005.859376
17.
Donoho
,
D. L.
, and
Huo
,
X.
,
2002
, “
Beamlets and Multiscale Image Analysis
,”
Multiscale and Multiresolution Methods: Theory and Applications
,
T. J.
Barth
,
T.
Chan
, and
R.
Haimes
, Eds.,
Springer
, Berlin Heidelberg, pp.
149
196
.
18.
Huo
,
X.
,
2005
, “
Beamlets and Multiscale Modeling
,”
Entry for the 2nd Edition of Encyclopedia of Statistical Sciences
,
C. B.
Read
,
N.
Balakrishnan
, and
B.
Vidakovic
, Eds.,
Wiley & Sons
,
NJ
.
19.
Willett
,
R. M.
, and
Nowak
,
R. D.
,
2003
, “
Platelets: A Multiscale Approach for Recovering Edges and Surfaces in Photon-Limited Medical Imaging
,”
IEEE Trans. Med. Imaging
,
22
(
3
), pp.
332
350
.10.1109/TMI.2003.809622
20.
Ying
,
L.
,
Demanet
,
L.
, and
Candès
,
E.
,
2005
, “
3D Discrete Curvelet Transform
,”
Proceeding of SPIE Conference Wavelet Applications in Signal & Image Processing
, San Diego, CA, p.
5914
.
21.
Lu
,
Y. M.
, and
Do
,
M. N.
,
2007
, “
Multidimensional Directional Filter Banks and Surfacelets
,”
IEEE Trans. Image Process.
,
16
(
4
), pp.
918
931
.10.1109/TIP.2007.891785
22.
Chandrasekaran
,
V.
,
Wakin
,
M. B.
,
Baron
,
D.
, and
Baraniuk
,
R. G.
,
2009
, “
Representation and Compression of Multidimensional Piecewise Functions Using Surflets
,”
IEEE Trans. Inf. Theory
,
55
(
1
), pp.
374
400
.10.1109/TIT.2008.2008153
23.
Scales
,
J. A.
,
1987
, “
Tomographic Inversion Via the Conjugate Gradient Method
,”
Geophysics
,
52
(
2
), pp.
179
185
.10.1190/1.1442293
24.
Piccolomini
,
E. L.
, and
Zama
,
F.
,
1999
, “
Conjugate Gradient Regularization Method in Computed Tomography Problems
,”
Appl. Math. Comput.
,
102
(
1
), pp.
87
99
.10.1016/S0096-3003(98)10007-3
25.
Qiu
,
W.
,
Titley-Peloquin
,
D.
, and
Soleimani
,
M.
,
2012
, “
Blockwise Conjugate Gradient Methods for Image Reconstruction in Volumetric CT
,”
Comput. Methods Program Biomed.
,
108
(
2
), pp.
669
678
.10.1016/j.cmpb.2011.12.002
26.
Arunprasath
,
T.
,
Rajasekaran
,
M. P.
,
Kannan
,
S.
, and
Kalasalingam
,
V. A.
,
2012
, “
Reconstruction of PET Brain Image Using Conjugate Gradient Algorithm
,”
Proceedings of 2012 World Congress on Information and Communication Technologies, Oct. 30 2012-Nov. 2 2012, Trivandrum, India
, pp. 73–78.10.1109/WICT.2012.6409053
27.
Shariff
,
M. H. B. M.
,
1995
, “
A Constrained Conjugate Gradient Method and the Solution of Linear Equations
,”
Comput. Math. Appl.
,
30
(
11
), pp.
25
37
.10.1016/0898-1221(95)00161-Q
You do not currently have access to this content.