Modeling using developable surfaces plays an important role in computer graphics and computer aided design. In this paper, we investigate a new problem called variational developable surface interpolation (VDSI). For a polyline boundary P, different from previous work on interpolation or approximation of discrete developable surfaces from P, the VDSI interpolates a subset of the vertices of P and approximates the rest. Exactly speaking, the VDSI allows to modify a subset of vertices within a prescribed bound such that a better discrete developable surface interpolates the modified polyline boundary. Therefore, VDSI could be viewed as a hybrid of interpolation and approximation. Generally, obtaining discrete developable surfaces for given polyline boundaries are always a time-consuming task. In this paper, we introduce a dynamic programming method to quickly construct a developable surface for any boundary curves. Based on the complexity of VDSI, we also propose an efficient optimization scheme to solve the variational problem inherent in VDSI. Finally, we present an adding point condition, and construct a G1 continuous quasi-Coons surface to approximate a quadrilateral strip which is converted from a triangle strip of maximum developability. Diverse examples given in this paper demonstrate the efficiency and practicability of the proposed methods.

References

References
1.
Carmo
,
M. P. D.
,
1976
,
Differential Geometry of Curves and Surfaces
, Vol. 1,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Frey
,
W. H.
,
2004
, “
Modeling Buckled Developable Surfaces by Triangulation
,”
Comput.-Aided Des.
,
36
(
4
), pp.
299
313
.10.1016/S0010-4485(03)00105-2
3.
Liu
,
Y. J.
,
Tang
,
K.
, and
Joneja
,
A.
,
2007
, “
Modeling Dynamic Developable Meshes by the Hamilton Principle
,”
Comput.-Aided Des.
,
39
(
9
), pp.
719
731
.10.1016/j.cad.2007.02.013
4.
Liu
,
Y. J.
,
Tang
,
K.
,
Gong
,
W. Y.
, and
Wu
,
T. R.
,
2011
, “
Industrial Design Using Interpolatory Discrete Developable Surfaces
,”
Comput.-Aided Des.
,
43
(
9
), pp.
1089
1098
.10.1016/j.cad.2011.06.001
5.
Rose
,
K.
,
Sheffer
,
A.
,
Wither
,
J.
,
Cani
,
M. P.
, and
Thibert
,
B.
,
2007
, “
Developable Surfaces from Arbitrary Sketched Boundaries
,” Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp.
163
172
.
6.
Wang
,
C. C. L.
, and
Tang
,
K.
,
2005
, “
Optimal Boundary Triangulations of an Interpolating Ruled Surface
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
4
), pp.
291
301
.10.1115/1.2052850
7.
Zeng
,
L.
,
Liu
,
Y. J.
,
Chen
,
M.
, and
Yuen
,
M. F.
,
2012
, “
Least Squares Quasi-Developable Mesh Approximation
,”
Comput. Aided Geom. Des.
,
29
(
7
), pp.
565
578
.10.1016/j.cagd.2012.03.009
8.
Shelden
,
D. R.
,
2002
, “
Digital Surface Representation and the Constructability of Gehry’s Architecture
,” PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
9.
Liu
,
Y. J.
,
Zhang
,
D. L.
, and
Yuen
,
M. M.
,
2010
, “
A Survey on CAD Methods in 3D Garment Design
,”
Comput. Ind.
,
61
(
6
), pp.
576
593
.10.1016/j.compind.2010.03.007
10.
Tang
,
K.
, and
Wang
,
C. C. L.
,
2005
, “
Modeling Developable Folds on a Strip
,”
J. Comput. Inf. Sci. Eng.
,
5
(
1
), pp.
35
47
.10.1115/1.1804206
11.
Pottmann
,
H.
, and
Wallner
,
J.
,
2010
,
Computational Line Geometry
,
Springer Verlag
,
Berlin, Germany
.
12.
Frey
,
W. H.
,
2002
, “
Boundary Triangulations Approximating Developable Surfaces that Interpolate a Closed Space Curve
,”
Int. J. Found. Comput. Sci.
,
13
(
2
), pp.
285
302
.10.1142/S0129054102001096
13.
Gurunathan
,
B.
, and
Dhande
,
S. G.
,
1987
, “
Algorithms for Development of Certain Classes of Ruled Surfaces
,”
Comput. Graphics
,
11
(
2
), pp.
105
112
.10.1016/0097-8493(87)90024-0
14.
Weiss
,
G.
, and
Furtner
,
P.
,
1988
, “
Computer-Aided Treatment of Developable Surfaces
,”
Comput. Graphics
,
12
(
1
), pp.
39
51
.10.1016/0097-8493(88)90006-4
15.
Chu
,
C. H.
, and
Séquin
,
C. H.
,
2002
, “
Developable Bezier Patches: Properties and Design
,”
Comput.-Aided Des.
,
34
(
7
), pp.
511
527
.10.1016/S0010-4485(01)00122-1
16.
Pottmann
,
H.
, and
Farin
,
G.
,
1995
, “
Developable Rational Bezier and B-spline Surfaces
,”
Comput. Aided Geom. Des.
,
12
(
5
), pp.
513
531
.10.1016/0167-8396(94)00031-M
17.
Bodduluri
,
R. M. C.
, and
Ravani
,
B.
,
1993
, “
Design of Developable Surfaces Using Duality Between Point and Plane Geometries
,”
Comput. Aided Des.
,
25
(
10
), pp.
621
632
.10.1016/0010-4485(93)90017-I
18.
Park
,
F. C.
,
Yu
,
J.
,
Chun
,
C.
, and
Ravani
,
B.
,
2002
, “
Design of Developable Surfaces Using Optimal Control
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
602
608
.10.1115/1.1515795
19.
Aumann
,
G.
,
2003
, “
A Simple Algorithm for Designing Developable Bézier Surfaces
,”
Comput. Aided Geom. Des.
,
20
(
8–9
), pp.
601
619
.10.1016/j.cagd.2003.07.001
20.
Robson
,
C.
,
Maharik
,
R.
,
Sheffer
,
A.
, and
Carr
,
N.
,
2011
, “
Context-Aware Garment Modeling from Sketches
,”
Comput. Graphics
,
35
(
3
), pp.
604
613
.10.1016/j.cag.2011.03.002
21.
Wang
,
C. C. L.
,
2008
, “
Flattenable Mesh Surface Fitting on Boundary Curves
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
2
), p.
021006
. 10.1115/1.2906695
22.
Wang
,
C. C. L.
,
2008
, “
Towards Flattenable Mesh Surfaces
,”
Comput.-Aided Des.
,
40
(
1
), pp.
109
122
.10.1016/j.cad.2007.06.001
23.
Liu
,
Y. J.
,
Lai
,
Y. K.
, and
Hu
,
S. M.
,
2009
, “
Stripification of Free-Form Surfaces with Global Error Bounds for Developable Approximation
,”
IEEE Trans. Autom. Sci. Eng.
,
6
(
4
), pp.
700
709
.10.1109/TASE.2008.2009926
24.
Catmull
,
E.
, and
Rom
,
R.
,
1974
, “
A Class of Local Interpolating Splines
,”
Comput. Aided Geom. Des.
,
R. E.
Barnhill
and
R. F.
Reisenfeld
, eds. Academic Press, New York,
74
, pp.
317
326
.
25.
Zoutendijk
,
G.
,
1960
,
Methods of Feasible Directions: A Study in Linear and Non-linear Programming
,
Elsevier Publishing Co.
,
Amsterdam
.
You do not currently have access to this content.