Mesh generation from X-ray computed tomography (CT) images of mechanical parts is an important consideration in industrial application, and boundary surface meshes in multimaterial parts can be extracted by generating segmented meshes from segmented images. In this paper, the authors outline a new approach for achieving segmented mesh generation. The image is first subjected to centroidal Voronoi tessellation and Delaunay tessellation steered by a density map to create a triangular mesh while maintaining discontinuities between materials. Given an input domain and a number of initial sites, the energy function is minimized automatically by iteratively updating the Voronoi tessellation and relocating sites to produce optimized domain discretization and form the mesh. Thus, the mesh in question is effectively and quickly segmented into different parts via this new graph cut method. The proposed approach is considered more efficient because there are fewer triangles than pixels, which reduces computation time and memory usage.

References

References
1.
Kruth
,
J. P.
,
Bartscher
,
M.
,
Carmignato
,
S.
,
Schmitt
,
R.
,
De Chiffre
,
L.
, and
Weckenmann
,
A.
,
2011
, “
Computed Tomography for Dimensional Metrology
,”
CIRP Ann.
,
60
(
2
), pp.
821
842
.10.1016/j.cirp.2011.05.006
2.
Shammaa
,
H.
,
Suzuki
,
H.
, and
Ohtake
,
Y.
,
2011
, “
Creeping Contours: A Multilabel Image Segmentation Method for Extracting Boundary Surfaces of Parts in Volumetric Images
,”
ASME J. Comput. Information Science in Engineering
11
(
1
), pp.
603
610
.10.1115/1.3569830
3.
Du
,
Q.
,
Gunzburger
,
M.
, and
Ju
,
L. L.
,
2010
, “
Advances in Studies and Applications of Centroidal Voronoi Tessellations
,”
Numerical Mathematics: Theory, Methods and Applications
3
(
2
), pp.
119
142
.
4.
Boykov
,
Y.
, and
Kolmogorov
,
V.
,
2004
, “
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision
,”
IEEE Tran. on Pattern Analysis and MachineInterlligence
26
(
9
), pp.
1124
1137
.10.1109/TPAMI.2004.60
5.
Du
,
Q.
, and
Wang
,
D. S.
,
2003
, “
Tetrahedral Mesh Generation and Optimization Based on Centroidal Voronoi Tessellations
,”
International Journal for Numerical Methods in Engineering
56
(
9
), pp.
1355
1373
.10.1002/nme.616
6.
Chen
,
L.
, and
Xu
,
J. C.
,
2004
, “
Optimal Delaunay Triangulations
,”
J. Comput. Math.
,
22
(
2
), pp.
299
308
.
7.
Du
,
Q.
,
Gunzburger
,
M. D.
, and
Ju
,
L. L.
,
2003
, “
Constrained Centroidal Voronoi Tesselations for Surfaces
,”
SIAM J. Sci. Comput.
24
(
5
), pp.
1488
1506
.10.1137/S1064827501391576
8.
Du
,
Q.
, and
Wang
,
D. S.
,
2005
, “
Anisotropic Centroidal Voronoi Tessellations and Their Applications
,”
SIAM J. Sci. Comput.
26
(
3
), pp.
737
761
.10.1137/S1064827503428527
9.
Valette
,
S.
, and
Chassery
,
J. M.
,
2004
, “
Approximated Centroidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening
,”
Computer Graphics Forum (Eurographics 2004 proceedings)
23
(
3
), pp.
381
389
.10.1111/j.1467-8659.2004.00769.x
10.
Paul Chew
,
L.
,
1989
, “
Guaranteed-Quality Triangular Meshes
,” Department of Computer Science, Tech Report No. 89-983, Cornell University.
11.
Ruppert
,
J.
,
1993
, “
A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation
,”
The fourth annual ACM SIAM symposium on Discrete algorithms
, pp.
548
585
.
12.
Du
,
Q.
,
Faber
,
V.
, and
Gunzburger
,
M.
,
1999
, “
Centroidal Voronoi Tessellations: Applications and Algorithms
,”
SIAM Rev.
41
, pp.
637
676
.10.1137/S0036144599352836
13.
Du
,
Q.
, and
Gunzburger
,
M.
,
2002
, “
Grid Generation and Optimization Based on Centroidal Voronoi Tessellations
,”
Appl. Math. Comput.
,
133
(
2–3
), pp.
591
607
.10.1016/S0096-3003(01)00260-0
14.
Dardenne
,
J.
,
Valette
,
S.
,
Siauve
,
N.
,
Burais
,
N.
, and
Prost
,
R.
,
2009
, “
Variational Tetrahedral Mesh Generation From Discrete Volume Data
,”
Visual Comput.
,
25
(
5
), pp.
401
410
.10.1007/s00371-009-0323-7
15.
Zhang
,
Y. J.
,
Hughes
,
T. J. R.
, and
Bajaj
,
C. L.
,
2010
, “
An Automatic 3D Mesh Generation Method for Domains With Multiple Materials
,”
Comput. Methods Appl. Mech. Engrg.
199
, pp.
405
415
.10.1016/j.cma.2009.06.007
16.
Veksler
,
O.
,
1999
, “
Efficient Graph-Based Energy Minization Methods in Computer Vision
,” Ph.D thesis.
17.
Li
,
Y.
,
Sun
,
J.
,
Tang
,
C. K.
,
Shum
,
I. Y.
,
2004
, “
Lazy Snapping
,”
ACM Trans. Graphics
23
(
3
), pp.
303
308
.10.1145/1015706.1015719
18.
Boykov
,
Y. Y.
, and
Veksler
,
O.
,
2006
, “
Graph Cuts in Vision and Graphics Theories and Applications
,”
Handbook of Mathematical Models in Computer Vision
, Springer, New York, pp.
79
96
.
19.
Boykov
,
Y. Y.
, and
Jolly
,
M. P.
,
2001
, “
Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images
,”
Eighth IEEE International Conference on Computer Vision 1
, pp.
105
112
.
20.
Yang
,
C.
,
Ohtake
,
Y.
, and
Suzuki
,
H.
,
2011
, “
Sealed Decomposition of a Triangular Mesh With Tetrahedral Mesh Segmentation
,”
International Journal of Computer-Aided Design and Applications
8
(
3
), pp.
421
433
.10.3722/cadaps.2011.421-433
21.
Ward
,
J. H.
,
1963
, “
Hierarchical Grouping to Optimize an Objective Function
,”
Journal of the American Statistical Association
58
, pp.
236
244
.10.1080/01621459.1963.10500845
22.
Fabri
,
A.
,
2001
, “
CGAL—The Computational Geometry Algorithm Library
,”
Proceedings of 10th International Meshing Roundtable
, pp.
137
142
.
You do not currently have access to this content.