Monotone paths are useful in many engineering design applications. In this paper, we address the problem of answering monotone descent path queries on terrains that are continually changing. A terrain can be represented by a unique contour tree. Such a contour tree belongs to a class of graphs called arbitrarily directed trees (ADTs). Let T be an ADT with n nodes. In this paper, we present a new linear time preprocessing algorithm for decomposing a static ADT T into a forest F, with which we can answer lowest common descendent (LCA) queries in O(1) time. This is useful in answering monotone path queries on the corresponding terrain. We show how to maintain this data structure, and thereby answer LCA queries efficiently, for dynamic ADTs. We also show how to maintain the data structure of dynamic terrains, while simultaneously maintaining the corresponding contour tree. This allows us to efficiently answer monotone path queries between any two points on dynamic terrains.

References

References
1.
de Berg
,
M.
,
Cheong
,
O.
,
van Kreveld
,
M.
, and
Overmars
,
M.
,
2008
,
Computational Geometry: Algorithms and Applications
,
3rd ed.
,
Springer-Verlag
,
Berlin, Germany
.
2.
Roy
,
S.
,
Das
,
S.
, and
Nandy
,
S. C.
,
2007
, “
Shortest Monotone Descent Path Problem in Polyhedral Terrain
,”
Comput. Geom.: Theory Appl.
,
37
(
2
), pp.
115
133
.10.1016/j.comgeo.2006.06.003
3.
Weber
,
G. H.
,
Dillard
,
S. E.
,
Carr
,
H.
,
Pascucci
,
V.
, and
Hamann
,
B.
,
2007
, “
Topology-Controlled Volume Rendering
,”
IEEE Trans. Vis. Comput. Graph.
,
13
(
2
), pp.
330
341
.10.1109/TVCG.2007.47
4.
Carr
,
H.
,
Snoeyink
,
J.
, and
van de Panne
,
M.
,
2010
, “
Flexible Isosurfaces: Simplifying and Displaying Scalar Topology Using the Contour Tree
,”
Comput. Geom.: Theory Appl.
,
43
(
1
), pp.
42
58
.10.1016/j.comgeo.2006.05.009
5.
Wei
,
X.
, and
Joneja
,
A.
,
2011
, “
On Minimum Link Monotone Path Problems
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
3
), p.
031002
.10.1115/1.3615687
6.
Wei
,
X.
,
Joneja
,
A.
, and
Mount
,
D. M.
,
2012
, “
Optimal Uniformly Monotone Partitioning of Polygons With Holes
,”
Comput.-Aided Des.
,
44
, pp.
1235
1252
.10.1016/j.cad.2012.06.005
7.
Chiang
,
Y. J.
,
Lenz
,
T.
,
Lu
,
X.
, and
Rote
,
G.
,
2005
, “
Simple and Optimal Output-Sensitive Construction of Contour Trees Using Monotone Paths
,”
Comput. Geom.: Theory Appl.
,
30
, pp.
165
195
.10.1016/j.comgeo.2004.05.002
8.
Yang
,
P.
, and
Qian
,
X.
,
2008
, “
Adaptive Slicing of Moving Least Squares Surfaces: Toward Direct Manufacturing of Point Set Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
13
), p.
031003
.10.1115/1.2955481
9.
Fayolle
,
P. A.
,
Pasko
,
A.
,
Schmitt
,
B.
, and
Mirenkov
,
N.
,
2005
, “
Constructive Heterogeneous Object Modeling Using Signed Approximate Real Distance Functions
,”
ASME J. Comput. Inf. Sci. Eng.
,
6
(
3
), pp.
221
229
.10.1115/1.2218366
10.
Singh
,
P.
, and
Dutta
,
D.
,
2001
, “
Multi-Direction Slicing for Layered Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
2
), pp.
129
142
.10.1115/1.1375816
11.
de Berg
,
M.
, and
van Kreveld
,
M. J.
,
1997
, “
Trekking in the Alps Without Freezing or Getting Tired
,”
Algorithmica
,
18
(
3
), pp.
306
323
.10.1007/PL00009159
12.
van Kreveld
,
M.
,
van Oostrum
,
R.
,
Bajaj
,
C.
,
Pascucci
,
V.
, and
Schikore
,
D. R.
,
1997
, “
Contour Trees and Small Seed Sets for Isosurface Traversal
,”
Proceedings of the 13th Annual Symposium on Computational Geometry
, pp.
212
220
.
13.
Shammaa
,
H.
,
Suzuki
,
H.
, and
Ohtake
,
Y.
,
2011
, “
Creeping Contours: A Multilabel Image Segmentation Method for Extracting Boundary Surfaces of Parts in Volumetric Images
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
1
), p.
011007
.10.1115/1.3569830
14.
Sarkar
,
R.
,
Zhu
,
X.
,
Gao
,
J.
,
Guibas
,
L. J.
, and
Mitchell
,
J. S. B.
,
2008
, “
Isocontour Queries and Gradient Descent With Guaranteed Delivery in Sensor Networks
,”
Proceedings of the 27th Annual IEEE Conference on Computer Communications
, pp.
1175
1183
.
15.
Nykänen
,
M.
, and
Ukkonen
,
E.
,
1994
, “
Finding Lowest Common Ancestors in Arbitrarily Directed Trees
,”
Inf. Process. Lett.
,
50
(
6
), pp.
307
310
.10.1016/0020-0190(94)00050-6
16.
Thorup
,
M.
,
2004
, “
Compact Oracles for Reachability and Approximate Distances in Planar Digraphs
,”
J. ACM
,
51
, pp.
993
1024
.10.1145/1039488.1039493
17.
Bender
,
M. A.
,
Farach-Colton
,
M.
,
Pemmasani
,
G.
,
Skiena
,
S.
, and
Sumazin
,
P.
,
2005
, “
Lowest Common Ancestors in Trees and Directed Acyclic Graphs
,”
J. Algorithms
,
57
(
2
), pp.
75
94
.10.1016/j.jalgor.2005.08.001
18.
Alstrup
,
S.
,
Gavoille
,
C.
,
Kaplan
,
H.
, and
Rauhe
,
T.
,
2004
, “
Nearest Common Ancestors: A Survey and a New Algorithm for a Distributed Environment
,”
Theory Comput. Syst.
,
37
, pp.
441
456
.10.1007/s00224-004-1155-5
19.
Harel
,
D.
, and
Tarjan
,
R.
,
1984
, “
Fast Algorithms for Finding Nearest Common Ancestor
,”
SIAM J. Sci. Comput.
,
13
, pp.
338
355
.10.1137/0213024
20.
Schieber
,
B.
, and
Vishkin
,
U.
,
1988
, “
On Finding Lowest Common Ancestors: Simplification and Parallelization
,”
SIAM J. Sci. Comput.
,
17
, pp.
1253
1262
.10.1137/0217079
21.
Berkman
,
O.
, and
Vishkin
,
U.
,
1994
, “
Finding Level Ancestors in Trees
,”
J. Comput. Syst. Sci.
,
48
, pp.
214
230
.10.1016/S0022-0000(05)80002-9
22.
Bender
,
M.
, and
Farach-Colton
,
M.
,
2000
, “
The LCA Problem Revisited
,”
Proceedings of Latin American Theoretical Informatics
, pp.
88
94
.
23.
Sleator
,
D. D.
, and
Tarjan
,
R. E.
,
1983
, “
A Data Structure for Dynamic Trees
,”
J. Comput. Syst. Sci.
,
26
, pp.
362
391
.10.1016/0022-0000(83)90006-5
24.
Cole
,
R.
, and
Hariharan
,
R.
,
2005
, “
Dynamic LCA Queries on Trees
,”
SIAM J. Sci. Comput.
,
34
(
4
), pp.
894
923
.10.1137/S0097539700370539
25.
Gabow
,
H. N.
,
1990
, “
Data Structure for Weighted Matching and Nearest Common Ancestors With Linking
,”
Proceedings of the 1st Annual ACM Symposium on Discrete Algorithms
, pp.
434
443
.
26.
Eckhardt
,
S.
,
Mühling
,
A.
, and
Nowak
,
J.
,
2007
, “
Fast Lowest Common Ancestor Computations in Dags
,”
Proceedings of the 15th Annual European Conference on Algorithms
, pp.
705
716
.
27.
Rebane
,
G.
, and
Pearl
,
J.
,
1987
, “
The Recovery of Causal Poly-Trees From Statistical Data
,”
Proceedings of the 3rd Workshop Uncertainty in Artificial Intelligence
, pp.
222
228
.
28.
Kim
,
J. H.
, and
Pearl
,
J.
,
1983
, “
A Computational Model for Causal and Diagnostic Reasoning in Inference Engines
,”
Proceedings of the 8th International Joint Conference on Artificial Intelligencepp
.
190
193
.
29.
Lai
,
K. J.
,
2008
, “
Complexity of Union-Split-Find Problems
,” M.S. thesis, Massachusetts Institute of Technology, Erik Demaine, Adviser.
30.
Patrascu
,
M.
, and
Demaine
,
E. D.
,
2004
, “
Lower Bounds for Dynamic Connectivity
,”
Proceedings of the 36th ACM symposium on Theory of Computing
, pp.
546
553
.
31.
Carr
,
H.
,
Snoeyink
,
J.
, and
Axen
,
U.
,
2003
, “
Computing Contour Trees in all Dimensions
,”
Comput. Geom.: Theory Appl.
,
24
(
2
), pp.
75
94
.10.1016/S0925-7721(02)00093-7
32.
Pascucci
,
V.
,
2001
, “
On the Topology of the Level Sets of a Scalar Field
,”
Proceedings the 13th Canadian Conference on Computational Geometry
, pp.
141
144
.
33.
Edelsbrunner
,
H.
,
Harer
,
J.
,
Mascarenhas
,
A.
,
Pascucci
,
V.
, and
Snoeyink
,
J.
,
2008
, “
Time-Varying Reeb Graphs for Continuous Space-Time Data
,”
Comput. Geom.: Theory Appl.
,
41
(
3
), pp.
149
166
.10.1016/j.comgeo.2007.11.001
34.
Edelsbrunner
,
H.
, and
Harer
,
J.
,
2002
, “
Jacobi Sets of Multiple Morse Functions
,”
Foundations of Computational Mathematics
,
Cambridge University
,
Cambridge, UK
, pp.
35
57
.
35.
Mascarenhaus
,
A.
, and
Snoeyink
,
J.
,
2005
, “
Implementing Time-Varying Contour Trees
,”
Proceedings of the 21st Annual Symposium on Computational Geometry
, pp.
370
371
.
36.
Kirkpatrick
,
D.
,
1983
, “
Optimal Search in Planar Subdivisions
,”
SIAM J. Sci. Comput.
,
12
(
1
), pp.
28
35
.10.1137/0212002
You do not currently have access to this content.