Assembly time estimation is traditionally a time-intensive manual process that requires detailed geometric and process information, which is often subjective and qualitative in nature. As a result, assembly time estimation is rarely applied during early design iterations. In this paper, the authors explore the possibility of automating the assembly time estimation process while reducing the level of design detail required. In this approach, they train artificial neural networks (ANNs) to estimate the assembly times of vehicle subassemblies using either assembly connectivity or liaison graph properties, respectively, as input data. The effectiveness of estimation is evaluated based on the distribution of estimates provided by a population of ANNs trained on the same input data using varying initial conditions. Results indicate that this method can provide time estimates of an assembly process with ±15% error while relying exclusively on the geometric part information rather than process instructions.

References

References
1.
Sharma
,
U.
,
2003
, “
Implementing Lean Principles With the Six Sigma Advantage: How a Battery Company Realized Significant Improvements
,”
J. Organ. Excell.
,
22
(
3
), pp.
43
52
.10.1002/npr.10078
2.
Gunasekaran
,
A.
,
1999
, “
Agile Manufacturing: A Framework for Research and Development
,”
Int. J. Prod. Econ.
,
62
(
1
), pp.
87
105
.10.1016/S0925-5273(98)00222-9
3.
Ameri
,
F.
, and
Dutta
,
D.
,
2005
, “
Product Lifecycle Management: Closing the Knowledge Loops
,”
Comput. Des. Appl.
,
2
(
5
), pp.
577
590
.10.1080/16864360.2005.10738322
4.
Boothroyd
,
G.
, and
Alting
,
L.
,
1992
, “
Design for Assembly and Disassembly
,”
CIRP Ann. Technol.
,
41
, pp.
625
636
.10.1016/S0007-8506(07)63249-1
5.
Choi
,
C. K.
, and
Ip
,
W. H.
,
1999
, “
A comparison of MTM and RTM
,”
Work Study
,
48
(
2
), pp.
57
61
.10.1108/00438029910253707
6.
Mathieson
,
J.
,
Wallace
,
B.
, and
Summers
,
J. D.
, 2012, “
Assembly Time Modelling Through Connective Complexity Metrics
,”
Int. J. Comput. Integr. Manuf.
, on-line (in press).
7.
Mohd Naim
,
Z.
,
2009
, “
Design for Assembly and Application Using Hitachi Assemblability Evaluation Method
,” Thesis, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Kuantan, Pahang Darul Makmur, Malaysia.
8.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2011
,
Product Design for Manufacture and Assembly
,
CRC Press
,
Boca Raton, FL
.
9.
Whitney
,
D. E.
,
2004
,
Mechanical Assemblies
,
Oxford University Press
,
Cambridge, MA
.
10.
Otto
,
K. N.
, and
Wood
,
K. L.
,
1998
, “
Product Evolution: A Reverse Engineering and Redesign Methodology
,”
Res. Eng. Des.
,
10
(
4
), pp.
226
243
.10.1007/s001639870003
11.
Ben-Arieh
,
D.
, and
Qian
,
L.
,
2003
, “
Activity-Based Cost Management for Design and Development Stage
,”
Int. J. Prod. Econ.
,
83
(
2
), pp.
169
183
.10.1016/S0925-5273(02)00323-7
12.
Duverlie
,
P.
, and
Castelain
,
J. M.
,
1999
, “
Cost Estimation During Design Step: Parametric Method Versus Case Based Reasoning Method
,”
Int. J. Adv. Manuf. Technol.
,
15
(
12
), pp.
895
906
.10.1007/s001700050147
13.
Hoover
,
C. W.
, and
Jones
,
J. B.
,
1991
,
Improving Engineering Design: Designing for Competitive Advantage
,
National Academies Press
,
Washington, DC
.
14.
Jiao
,
J.
, and
Tseng
,
M. M.
,
1999
, “
A Pragmatic Approach to Product Costing Based on Standard Time Estimation
,”
Int. J. Operat. Product. Manage.
,
19
(
7
), pp.
738
755
.10.1108/01443579910271692
15.
Weber
,
J.
,
2009
,
Automotive Development Processes: Processes for Successful Customer Oriented Vehicle Development
,
Springer
,
New York, NY
.
16.
Miller
,
M.
,
Griese
,
D.
,
Summers
,
J. D.
,
Peterson
,
M.
, and
Mocko
,
G. M.
,
2012
, “
Representation: Installation Process Step Instructions as an Automated Assembly Time Estimation Tool
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME
,
Chicago, IL
, p.
CIE–70109
.
17.
Maynard
,
H.
,
Stegemerten
,
G. J.
, and
Schwab
,
J.
,
1948
,
Methods-Time Measurement
,
McGraw-Hill
,
New York, NY
.
18.
Laring
,
J.
,
2002
, “
MTM-Based Ergonomic Workload Analysis
,”
Int. J. Ind. Ergonom.
,
30
(
3
), pp.
135
148
.10.1016/S0169-8141(02)00091-4
19.
Cakmakci
,
M.
, and
Karasu
,
M. K.
,
2007
, “
Set-Up Time Reduction Process and Integrated Predetermined Time System MTM-UAS: A Study of Application in a Large Size Company of Automobile Industry
,”
Int. J. Adv. Manuf. Technol.
,
33
(
3
), pp.
334
344
.10.1007/s00170-006-0466-x
20.
Owensby
,
E.
,
Shanthakumar
,
A.
,
Rayate
,
V.
,
Namouz
,
E. Z.
,
Summers
,
J. D.
, and
Owensby
,
J. E.
,
2011
, “
Evaluation and Comparison of Two Design for Assembly Methods: Subjectivity of Information
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME
,
Washington, DC
, pp.
DETC2011
47530
.
21.
Owensby
,
J. E.
,
Namouz
,
E. Z.
,
Shanthakumar
,
A.
, and
Summers
,
J. D.
,
2012
, “
Representation: Extracting Mate Complexity From Assembly Models to Automatically Predict Assembly Times
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME
,
Chicago, IL
, pp.
DETC2012
70995
.
22.
Snider
,
M.
,
Summers
,
J. D.
,
Teegavarapu
,
S.
, and
Mocko
,
G. M.
,
2008
, “
Database Support for Reverse Engineering, Product Teardown, and Redesign as Integrated into a Mechanical Engineering Course
,”
Comput. Educ. J.
,
18
(
4
), pp.
9
21
. Available online at: http://www.asee.org/papers-and-publications/publications/division-publications/computers-in-education-journal
23.
Snider
,
M.
,
Teegavarapu
,
S.
,
Hesser
,
D. S.
, and
Summers
,
J. D.
,
2006
, “
Augmenting tools for reverse engineering methods
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME
,
Philadelphia, PA
, p.
DAC–99676
.
24.
Mathew
,
A.
, and
Rao
,
C. S. P.
,
2010
, “
A CAD System for Extraction of Mating Features in an Assembly
,”
Assem. Autom.
,
30
(
2
), pp.
142
146
.10.1108/01445151011029772
25.
Sambhoos
,
K.
,
Koc
,
B.
, and
Nagi
,
R.
,
2009
, “
Extracting Assembly Mating Graphs for Assembly Variant Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
, p.
34501
.10.1115/1.3184607
26.
Namouz
,
E. Z.
, and
Summers
,
J. D.
,
2013
,
Complexity Connectivity Metrics—Predicting Assembly Times With Low Fidelity Assembly CAD Models
,
Springer
,
Bochum, Germany
.
27.
Mathieson
,
J. L.
,
Shanthakumar
,
A.
,
Sen
,
C.
,
Arlitt
,
R.
,
Summers
,
J. D.
, and
Stone
,
R.
,
2011
, “
Complexity as a Surrogate Mapping between Function Models and Market Value
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
DETC2011
47481
.
28.
Mathieson
,
J. L.
,
Sen
,
C.
, and
Summers
,
J. D.
,
2009
, “
Information Generation in the Design Process
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Computers and Information in Engineering Conference, ASME
,
San Diego, CA
, pp.
DETC2009
87359
.
29.
Mathieson
,
J. L.
,
Miller
,
M.
, and
Summers
,
J. D.
,
2011
, “
A Protocol for Connective Complexity Tracking in the Engineering Design Process
,”
International Conference on Engineering Design 2011
,
Copenhagen, Denmark
, p.
657
.
30.
Tu
,
J. V.
,
1996
, “
Advantages and Disadvantages of Using Artificial Neural Networks versus Logistic Regression for Predicting Medical Outcomes
,”
J. Clin. Epidemiol.
,
49
(
11
), pp.
1225
1231
.10.1016/S0895-4356(96)00002-9
31.
Zhang
,
G.
,
Patuwo
,
B. E.
, and
Hu
,
M. Y.
,
1998
, “
Forecasting With Artificial Neural Network: The State of the Art
,”
Int. J. Forecast.
,
14
(
1
), pp.
35
62
.10.1016/S0169-2070(97)00044-7
32.
Sharda
,
R.
, and
Patil
,
R. B.
,
1992
, “
Connectionist Approach to Time Series Prediction: An Empirical Test
,”
J. Intell. Manuf.
,
3
, pp.
317
323
.10.1007/BF01577272
33.
Shtub
,
A.
, and
Versano
,
R.
,
1999
, “
Estimating the Cost of Steel Pipe Bending: A Comparison Between Neural Networks and Regression Analysis
,”
Int. J. Prod. Econ.
,
62
, pp.
201
207
.10.1016/S0925-5273(98)00212-6
34.
Kohzadi
,
N.
,
Boyd
,
M. S.
,
Kermanshahi
,
B.
,
Kaastra
,
I.
, and
Khozadi
,
N.
,
1996
, “
A Comparison of Artificial Neural Networks and Time Series Models for Forecasting Commodity Prices
,”
Neurocomputing
,
10
(
2
), pp.
161
181
.10.1016/0925-2312(95)00020-8
35.
Blum
,
A.
,
1992
,
Neural Networks in C++: An Object-Oriented Framework for Building Connectionist Systems
,
John Wiley & Sons, Inc.
, New York.
You do not currently have access to this content.