Engineering design heuristics offer the potential to improve the design process and resultant designs. Currently, heuristics are empirically derived by experts. The goal of this paper is to automate the heuristics generation process. Functional modeling, a well-established product representation framework, is applied in this research to abstract the intended functionality of a product. Statistically significant heuristics, extracted from a database of functional models, serve as design suggestions or guidelines for concept generation. The heuristics can further be applied to automate portions of the concept generation process. Prior research efforts in automated concept generation rely heavily on the design repository. The repository needs to be appended for broader categories of design problems, and, at the same time, a tool for quick analysis of the expanded repository is required. An automated heuristic extraction process has the capability to efficiently mine the updated repositories and find new heuristics for design practice. A key objective of this research is to develop design heuristics applicable in the diverse and challenging domain of inclusive design. The research applies graph theory for mathematical representation of the functional model, graph visualization for comprehending graphs, and graph data mining to extract heuristics. The results show that the graphical representation of functional models along with graph visualization allows quick updates to the design repository. In addition, we show that graph data mining has the capability to efficiently search for new design heuristics from the updated repository.

References

References
1.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2008
, “
Using a Design Repository to Drive Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
014502
.10.1115/1.2830844
2.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), pp.
1
9
.10.1115/1.3593409
3.
Helms
,
B.
, and
Shea
,
K.
,
2012
, “
Computational Synthesis of Product Architectures Based on Object-Oriented Graph Grammars
,”
ASME J. Mech. Des.
,
134
(
2
), pp.
021008
021014
.10.1115/1.4005592
4.
Kurtoglu
,
T.
, and
Campbell
,
M.
,
2009
, “
Automated Synthesis of Electromechanical Design Configurations From Empirical Analysis of Function to Form Mapping
,”
J. Eng. Des.
,
20
(
1
), pp.
83
104
.10.1080/09544820701546165
5.
Bryant
,
C. R.
,
McAdams
,
D. A.
,
Stone
,
R. B.
,
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2005
, “
A Computational Technique for Concept Generation
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA.
6.
Bohm
,
M. R.
,
Stone
,
R. B.
, and
Szykman
,
S.
,
2005
, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
, pp.
360
372
.10.1115/1.1884618
7.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Topological Information Content and Expressiveness of Function Models in Mechanical Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
, p.
031003
.10.1115/1.3462918
8.
Campbell
,
M. I.
,
Rai
,
R.
, and
Kurtoglu
,
T.
,
2009
, “
A Stochastic Graph Grammar Algorithm for Interactive Search
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, San Diego, CA. Available at http://dart.eng.buffalo.edu/A_STOCHASTIC_INTERACTIVE_SEARCH_JMD_V_Final.pdf
9.
Patel
,
J.
, and
Campbell
,
M. I.
,
2008
, “
An Optimization Approach/Technique for Solving Graph Based Design Problems
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, New York, NY.
10.
Vempati
,
C.
, and
Campbell
,
M. I.
,
2007
, “
A Graph Grammar Approach to Generate Neural Network Topologies
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV.
11.
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2009
, “
Automated Synthesis of Electromechanical Design Configurations From Empirical Analysis of Function to Form Mapping
,”
J. Eng. Des.
,
20
(
1
), pp.
83
104
.10.1080/09544820701546165
12.
Wang
,
H.
, and
Roy
,
U.
,
2005
, “
A Graph-Based Method for Mechanical Product Family Modeling and Functional Tolerancing
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA.
13.
Siddique
,
Z.
, and
Rosen
,
D. W.
,
2001
, “
On Combinatorial Design Spaces for the Configuration Design of Product Families
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
15
(
2
), pp.
91
108
.10.1017/S0890060401152029
14.
Siddique
,
Z.
, and
Rosen
,
D. W.
,
1999
, “
Product Platform Design: A Graph Grammar Approach
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV.
15.
Goel
,
A.
,
1997
, “
Design, Analogy and Creativity
,”
IEEE Expert Intell. Syst. Appl.
,
12
(
3
), pp.
62
70
.
16.
Rao
,
R. V.
, and
Padmanabhan
,
K. K.
,
2007
, “
Rapid Prototyping Process Selection Using Graph Theory and Matrix Approach
,”
J. Mater. Process. Technol.
,
194
(
1–3
), pp.
81
88
.10.1016/j.jmatprotec.2007.04.003
17.
Rao
,
R. V.
,
2006
, “
A Material Selection Model Using Graph Theory and Matrix Approach
,”
Mater. Sci. Eng. A
,
431
(
1–2
), pp.
248
255
.10.1016/j.msea.2006.06.006
18.
Zhang
,
H. C.
, and
Kuo
,
T. C.
,
1996
, “
A Graph-Based Approach to Disassembly Model for End-of-Life Product Recycling
,”
Electronics Manufacturing Technology Symposium, Nineteenth IEEE/CPMT
, pp.
247
254
.
19.
Shai
,
O.
,
2003
, “
Transforming Engineering Problems Through Graph Representations
,”
Adv. Eng. Inf.
,
17
(
2003
), pp.
77
93
.10.1016/j.aei.2003.09.001
20.
Zhang
,
W. Y.
,
Tor
,
S. B.
, and
Britton
,
G. A.
,
2004
, “
A Graph and Matrix Representation Scheme for Functional Design of Mechanical Products
,”
Int. J. Adv. Manuf. Technol.
,
25
, pp.
221
232
.10.1007/s00170-003-1827-3
21.
Stone
,
R.
,
Wood
,
K.
, and
Crawford
,
R.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architectures
,”
Des. Stud.
,
21
(
1
), pp.
5
31
.10.1016/S0142-694X(99)00003-4
22.
Potter
,
S.
,
Culley
,
S. J.
, and
Darlington
,
M. J.
,
2003
, “
Automatic Conceptual Design Using Experience-Derived Heuristics
,”
Res. Eng. Des.
,
14
(
3
), pp.
131
144
.10.1007/s00163-003-0034-4
23.
Chakrabarti
,
A.
, and
Bligh
,
T. P.
,
1996
, “
An Approach to Functional Synthesis of Solutions in Mechanical Conceptual Design. Part II: Kind Synthesis
,”
Res. Eng. Des.
,
8
(
1
), pp.
52
62
.10.1007/BF01616556
24.
Eloy
,
S.
, and
Duarte
,
J. P.
,
2011
, “
A Transformation Grammar for Housing Rehabilitation
Nexus Netw. J.
,
13
(
1
), pp.
49
71
.10.1007/s00004-011-0052-x
25.
Schmidt
,
L.
, and
Cagan
,
J.
,
1997
, “
GGREADA: A Graph Grammar-Based Machine Design Algorithm
,”
Res. Eng. Des.
,
9
(
4
), pp.
195
213
.10.1007/BF01589682
26.
Helms
,
B.
,
Shea
,
K.
, and
Hoisl
,
F.
,
2009
, “
A Framework for Computational Design Synthesis Based on Graph-Grammars and Function-Behavior-Structure
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, San Diego, CA.
27.
Cagan
,
J.
,
Campbell
,
M. I.
,
Finger
,
S.
, and
Tomiyama
,
T.
,
2005
, “
A Framework for Computational Design Synthesis: Model and Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
, p.
171
181
.10.1115/1.2013289
28.
Sridharan
,
P.
, and
Campbell
,
M. l.
,
2004
, “
A Grammar for Functional Structures
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Salt Lake City, UT.
29.
Orsborn
,
S.
,
Boatwright
,
P.
, and
Cagan
,
J.
,
2007
, “
Identifying Product Shape Relationships Using Principal Component Analysis
,”
Res. Eng. Des.
, pp.
163
180
.
30.
Orsborn
,
S.
,
Cagan
,
J.
, and
Boatwright
,
P.
,
2007
, “
A Methodology for Creating a Statistically Derived Shape Grammar Composed of Non-Obvious Shape Chunks
,”
Res. Eng. Des.
, pp.
181
196
.
31.
Agard
,
B.
, and
Kusiak
,
A.
,
2004
, “
Data-Mining-Based Methodology for the Design of Product Family
,”
Int. J. Prod. Res.
,
42
(
15
), pp.
2955
2969
.10.1080/00207540410001691929
32.
Romanowski
,
C. J.
, and
Nagi
,
R.
,
2004
, “
A Data Mining Approach to Forming Generic Bills of Materials in Support of Variant Design Activities
,”
J. Comput. Inf. Sci. Eng.
,
4
(
4
), pp.
316
328
.10.1115/1.1812556
33.
Moon
,
S. K.
,
Kumara
,
S. R. T.
, and
Simpson
,
T. W.
,
2006
, “
Data Mining and Fuzzy Clustering to Support Product Family Design
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Philadelphia, PA.
34.
Shao
,
X. Y.
,
Wang
,
Z. H.
,
Li
,
P. G.
, and
Feng
,
C. X. J.
,
2006
, “
Integrating Data Mining and Rough Set for Customer Group-Based Discovery of Product Configuration Rules
,”
International Journal of Production Research
,
44
(
14
), pp.
2789
2811
.10.1080/00207540600675777
35.
Liu
,
Y.
,
Liang
,
Y.
,
Kwong
,
C. K.
, and
Lee
,
W. B.
,
2010
, “
A New Design Rationale Representation Model for Rationale Mining
,”
J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031009
.10.1115/1.3470018
36.
Fischer
,
I.
, and
Meinl
,
T.
,
2004
, “
Graph Based Molecular Data Mining—An Overview
,”
2004 IEEE International Conference on Systems, Man and Cybernetics
, pp.
4578
4582
.
37.
Boginski
,
V.
,
Butenko
,
S.
, and
Pardalos
,
P. M.
,
2006
, “
Mining Market Data: A Network Approach
,”
Computers Oper. Res.
, pp.
3171
3184
.10.1016/j.cor.2005.01.027
38.
Boginski
,
V.
,
Butenko
,
S.
, and
Pardalos
,
P. M.
,
2005
, “
Statistical Analysis of Financial Networks
,”
Comput. Stat. Data Anal.
, pp.
431
443
.10.1016/j.csda.2004.02.004
39.
Cook
,
D. J.
, and
Holder
,
L. B.
,
2007
,
Mining Graph Data
,
John Wiley & Sons
,
New Jersey
.
40.
Connell
,
B. R.
,
Jones
,
M.
,
Mace
,
R.
,
Mueller
,
J.
,
Mullick
,
A.
,
Ostroff
,
E.
,
Sanford
,
J.
,
Steinfeld
,
E.
,
Story
,
M.
, and
Vanderheiden
,
G.
,
1997
, “
The Principles of Universal Design
,” http://www.design.ncsu.edu/cud/about_ud/udprincipleshtmlformat.html—top
41.
Danford
,
G. S.
,
2003
, “
Universal Design People with Vision, Hearing, and Mobility Impairments Evaluate a Model Building
,”
Generations
,
27
(
1
), pp.
91
94
.
42.
Vanderheiden
,
G.
,
1997
,
Design for People With Functional Limitations Due to Disability, Aging or Circumstances
,
G.
Salvendy
, ed.,
John Wiley & Sons
,
New York
.
43.
Clarkson
,
J.
, and
Coleman
,
R.
,
2010
, “
Inclusive Design
,”
J. Eng. Des.
,
21
(
2
), pp.
127
129
.10.1080/09544821003693689
44.
Langdon
,
P. M.
,
Clarkson
,
P. J.
, and
Robinson
,
P.
,
2008
,
Designing Inclusive Futures
,
Springer Verlag
,
London
.
45.
Sangelkar
,
S.
, and
McAdams
,
D. A.
,
2010
Adapting ADA Architectural Design Knowledge to Product Design: Groundwork for a Function Based Approach
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Montreal, QC.
46.
Kostovich
,
V.
,
McAdams
,
D. A.
, and
Moon
,
S. K.
,
2009
, “
Representing User Activity and Product Function for Universal Design
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, San Diego, CA.
47.
Sangelkar
,
S.
, and
McAdams
,
D. A.
,
2012
, “
Creating Actionfunction Diagrams for User Centric Design
,”
Proceedings of the ASME ASEE Annual Conference and Exposition
, San Antonio, TX.
48.
Sangelkar
,
S.
, and
McAdams
,
D. A.
,
2011
Formalizing User Activity- Product Function Association Based Design Rules for Universal Products
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Washington, DC.
49.
Sangelkar
,
S.
,
Cowen
,
N.
, and
McAdams
,
D. A.
,
2012
, “
User Activity—Product Function Association Based Design Rules for Universal Products
Des. Stud.
,
33
(
1
), pp.
85
110
.10.1016/j.destud.2011.06.002
50.
Sangelkar
,
S.
, and
McAdams
,
D. A.
,
2012
, “
Adapting ADA Architectural Design Knowledge to Product Design Using Association Rule Mining: A Function Based Approach
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071003
.10.1115/1.4006738
51.
Inokuchi
,
A.
,
Washio
,
T.
, and
Motoda
,
H.
,
2000
, “
An Apriori-Based Algorithm for Mining Frequent Substructures From Graph Data
,”
Principles of Data Mining and Knowledge Discovery
, pp.
13
23
.10.1007/3-540-45372-5
52.
Clark
,
J.
, and
Holton
,
D. A.
,
1991
,
A First Look at Graph Theory
,
World Scientific
,
New Jersey
.
53.
McAdams
,
D. A.
,
2011
, “
Product Synthesis Engineering Lab: UD Repository
,” Available at http://www.prosedesign.org
54.
Karypis
,
G.
,
2011
, “
PAFI Software Package for Finding Frequent Patterns in Diverse Datasets
,” available at http://glaros.dtc.umn.edu/gkhome/pafi/overview
55.
Ramachandran
,
R.
,
Caldwell
,
B. W.
, and
Mocko
,
G. M.
,
2011
, “
A User Study to Evaluate the Function Model and Function Interaction Model for Concept Generation
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Washington, DC.
You do not currently have access to this content.