This paper presents a haptics-based training simulator for dental implant surgery. Most of the previously developed dental simulators are targeted for exploring and drilling purpose only. The penalty-based contact force models with spherical-shaped dental tools are often adopted for simplicity and computational efficiency. In contrast, our simulator is equipped with a more precise force model adapted from the Voxmap-PointShell (VPS) method to capture the essential features of the drilling procedure, with no limitations on drill shape. In addition, a real-time torque model is proposed to simulate the torque resistance in the implant insertion procedure, based on patient-specific tissue properties and implant geometry. To achieve better anatomical accuracy, our oral model is reconstructed from cone beam computed tomography (CBCT) images with a voxel-based method. To enhance the real-time response, the parallel computing power of GPUs is exploited through extra efforts in data structure design, algorithms parallelization, and graphic memory utilization. Results show that the developed system can produce appropriate force feedback at different tissue layers during pilot drilling and can create proper resistance torque responses during implant insertion.

References

References
3.
Wang
,
D.
,
Yuru
,
Z.
,
Yuhui
,
W.
,
Lee
,
Y. S.
,
L.
Peijun
, and
Yong
,
W.
,
2005
, “
Cutting on Triangle Mesh: Local Model-Based Haptic Display for Dental Preparation Surgery Simulation
,”
IEEE Trans. Vis. Comput. Graph.
,
11
, pp.
671
683
.10.1109/TVCG.2005.97
4.
Rhienmora
,
P.
,
Haddawy
,
P.
,
Dailey
,
M. N.
,
Khanal
,
P.
, and
Suebnukarn
,
S.
,
2008
, “
Development of a Dental Skills Training Simulator Using Virtual Reality and Haptic Device
,”
NECTEC Tech. J.
,
8
, pp.
140
147
.
5.
Cho
,
J. H.
,
Jung
,
H.
,
Yu
,
I.
,
Lee
,
K.
,
Lee
,
D. Y.
,
Ahn
,
H. S.
,
Park
,
I.
,
Yeo
,
S. H.
, and
Han
,
S.-H.
,
2007
, “
Surface-Data-Based Haptic Rendering for Simulation of Surgery of Closed Reduction and Internal Fixation
,”
Lyon, France
,
pp.
210
213
.
6.
Esen
,
H.
,
Yano
,
K. I.
, and
Buss
,
M.
,
2008
, “
Bone Drilling Medical Training System
,”
Springer Tracts in Advanced Robotics
, Vol.
45
,
STAR
, pp.
245
278
.
7.
Luciano
,
C.
,
Banerjee
,
P.
, and
DeFenti
,
T.
,
2009
, “
Haptics-Based Virtual Reality Periodontal Training Simulator
,”
Virtual Reality
,
13
, pp.
69
85
.10.1007/s10055-009-0112-7
8.
Heiland
,
M.
,
Petersik
,
A.
,
Pflesser
,
B.
,
Tiede
,
U.
,
Schmelzle
,
R.
,
Höhne
,
K. H.
, and
Handels
,
H.
,
2004
, “
Realistic Haptic Interaction for Computer Simulation of Dental Surgery
,”
Int. Congr. Ser.
,
1268
, pp.
1226
1229
.10.1016/j.ics.2004.03.132
9.
Wu
,
J.
,
Yu
,
G.
,
Wang
,
D.
,
Zhang
,
Y.
, and
Wang
,
C. C. L.
, “
Voxel-Based Interactive Haptic Simulation of Dental Drilling
,”
San Diego
,
CA
, pp.
39
48
.
10.
Yau
,
H. T.
,
Tsou
,
L. S.
, and
Tsai
,
M. J.
,
2006
, “
Octree-Based Virtual Dental Training System With a Haptic Device
,”
Comput.-Aided Des. Appl.
,
3
, pp.
415
424
.
11.
Kim
,
K.
,
Park
,
Y.-S.
, and
Park
,
J.
,
2008
, “
Volume-Based Haptic Model for Bone-Drilling
,”
Piscataway, NJ
, pp.
255
259
.
12.
He
,
X.
, and
Chen
,
Y.
,
2006
, “
Bone Drilling Simulation Based on Six Degree-of-Freedom Haptic Rendering
,”
Euro-Haptics
,
Paris, France
, pp.
203
210
.
13.
Acosta
,
E.
, and
Liu
,
A.
,
2007
, “
Real-Time Volumetric Haptic and Visual Burrhole Simulation
,”
Charlotte, NC
, pp.
247
250
.
14.
Morris
,
D.
,
Sewell
,
C.
,
Barbagli
,
F.
,
Salisbury
,
K.
,
Blevins
,
N. H.
, and
Girod
,
S.
,
2006
, “
Visuohaptic Simulation of Bone Surgery for Training and Evaluation
,”
IEEE Comput. Graph. Appl.
,
26
, pp.
48
57
.10.1109/MCG.2006.140
15.
Agus
,
M.
,
Giachetti
,
A.
,
Gobbetti
,
E.
,
Zanetti
,
G.
, and
Zorcollo
,
A.
,
2003
, “
Real-Time Haptic and Visual Simulation of Bone Dissection
,”
Presence
,
12
, pp.
110
122
.10.1162/105474603763835378
16.
Kim
,
L.
, and
Park
,
S. H.
,
2006
, “
Haptic Interaction and Volume Modeling Techniques for Realistic Dental Simulation
,”
Vis. Comput.
,
22
, pp.
90
98
.10.1007/s00371-006-0369-8
17.
McNeely
,
W. A.
,
Puterbaugh
,
K. D.
, and
Troy
,
J. J.
,
1999
, “
Six Degree-of-Freedom Haptic Rendering Using Voxel Sampling
,”
New York, NY
, pp.
401
408
.
18.
Renz
,
M.
,
Preusche
,
C.
,
Pötke
,
M.
,
Kriegel
,
H.-P.
, and
Hirzinger
,
G.
,
2001
, “
Stable Haptic Interaction With Virtual Environments Using an Adapted Voxmap-Pointshell Algorithm
,”
Eurohaptics
, pp.
149
154
.
19.
Majewicz
,
A.
,
Glasser
,
J.
,
Bauer
,
R.
,
Belkoff
,
S. M.
,
Mears
,
S. C.
, and
Okamura
,
A. M.
,
2010
, “
Design of a Haptic Simulator for Osteosynthesis Screw Insertion
,”
2010 IEEE Haptics Symposium (Formerly Known as Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems)
, March 25–26, Piscataway, NJ, pp.
497
500
.
20.
Nvidia
,
2010
, “
NVIDIA CUDA Programming Guide, Version 3.0
.”
21.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
Comput. Graph. (ACM)
,
21
, pp.
163
169
.10.1145/37402.37422
23.
Zheng
,
F.
,
Lu
,
W. F.
, and
Wong
,
Y. S.
,
2011
, “
Voxel-Based Haptic Training Simulator for Screw Insertion in Knee Osteotomy
,”
Automation, Robotics and Applications (ICARA)
, pp.
179
183
.
24.
Zheng
,
F.
,
Lu
,
W. F.
,
Wong
,
Y. S.
, and
Foong
,
K. W. C.
,
2011
, “
GPU-Based Haptic Simulator for Dental Bone Drilling
,”
ASME Conference Proceedings
, pp.
1419
1428
.
25.
Meagher
,
D.
,
1982
, “
Geometric Modeling Using Octree Encoding
,”
Comput. Graph. and Image Process.
,
19
(
2
), pp.
129
147
.10.1016/0146-664X(82)90104-6
26.
Thomas
,
R. L.
,
Bouazza-Marouf
,
K.
, and
Taylor
,
G. J.
,
2008
, “
Automated Surgical Screwdriver: Automated Screw Placement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
, pp.
817
827
.10.1243/09544119JEIM375
You do not currently have access to this content.