A new method for formulation, solution, and sensitivity analysis of collision detection of convex objects in motion is presented. The collision detection problem is formulated as a parametric programming problem governed by the changes in the relative translation and relative rotation between the two objects considered. The two parameters together determine all the possible relative configurations between two moving convex objects. Therefore, solving this parametric problem allows for knowing the proximity information for all the possible configurations of the objects. We develop a two-step decomposition procedure to solve this parametric programming problem, and show that the solution is a convex function of the two parameters. This convexity feature enables an archive of the proximity information and sensitivity analysis for the collision detection problem.

References

References
1.
Hwang
,
Y.
, and
Ahuja
,
N.
,
1992
, “
Gross Motion Planning—A Survey
,”
ACM Comput. Surv.
,
24
(
3
), pp.
219
291
.10.1145/136035.136037
2.
Akgunduz
,
A.
,
Banerjee
,
P.
, and
Mehrotra
,
S.
,
2005
, “
A Linear Programming Solution for Exact Collision Detection
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
1
), pp.
48
55
.10.1115/1.1846053
3.
Lin
,
M.
, and
Gottschalk
,
S.
,
1998
, “
Collision Detection Between Geometric Models: a Survey
,”
Proceedings of IMA Conference on Mathematics of Surfaces
.
4.
Cohen
,
J. D.
,
Lin
,
M. C.
,
Manocha
,
D.
, and
Ponamgi
,
M. K.
,
1995
, “
I-COLLIDE: An Interactive and Exact Collision System for Large-Scale Environments
,”
Proceedings of ACM Interactive 3D Graphic Conference
, Monterey, CA, pp.
189
196
.
5.
Gottschalk
,
S.
,
Lin
,
M. C.
, and
Manocha
,
D.
,
1996
, “
OBB-Tree: A Hierarchical Structure for Rapid Interference Detection
,”
Proceedings of SIGGRAPH
,
New Orleans, LA
, pp.
171
180
.
6.
Quinlan
,
S.
,
1994
, “
Efficient Distance Computation Between Non-Convex Objects
,”
Proceedings of IEEE Conference on Robotics and Automation
, pp.
3324
3329
.
7.
Hubbard
,
P. M.
,
1996
, “
Approximating Polyhedra With Spheres for Time-Critical Collision Detection
,”
ACM Trans. Graph.
,
15
, pp.
179
210
.10.1145/231731.231732
8.
Lin
,
M.
, and
Canny
,
J.
,
1991
. “
A Fast Algorithm for Incremental Distance Calculation
,”
Proceedings of the 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
, pp.
1008
1014
.
9.
Ong
,
C. J.
, and
Gilbert
,
E. G.
,
1997
, “
The Gilbert-Johnson-Keerthi Distance Algorithm: A Fast Version for Incremental Motions
,”
Proceedings of IEEE Conference on Robotics and Automation
, pp.
1183
1189
.
10.
Ponamgi
,
M.
,
Manocha
,
D.
, and
Lin
,
M.
,
1997
, “
Incremental Algorithms for Collision Detection Between Solid Models
,”
IEEE Trans. Vis. Comput. Graph.
,
3
(
1
), pp.
51
64
.10.1109/2945.582346
11.
Leung
,
B.
,
Wu
,
C.-H.
,
Memik
,
S. O.
, and
Mehrotra
,
S.
,
2010
, “
An Interior Point Optimization Solver for Real Time Inter-Frame Collision Detection: Exploring Resource-Accuracy-Platform Tradeoffs
,”
2010 International Conference on Field Programmable Logic and Applications
, pp.
113
118
.
12.
Ong
,
C.
, and
Gilbert
,
E. G.
,
1996
, “
Growth Distance: New Measures for Object-Separation and Penetration
,”
IEEE Trans. Rob. Autom.
,
12
(
6
), pp.
888
903
.10.1109/70.544772
13.
Rimon
,
E.
, and
Boyd
,
S.
,
1997
, “
Obstacle Collision Detection Using Best Ellopsoid Fit
,”
J. Intell. Rob. Syst.
,
18
(
2
), pp.
105
126
.10.1023/A:1007960531949
14.
Schlemmer
,
M.
, and
Gruebel
,
G.
,
1998
, “
Real-Time Collision-Free Trajectory Optimization of Robot Manipulators Vis Semi-Infinite Parameter Optimization
,”
Int. J. Rob. Res.
,
17
(
9
), pp.
1013
1021
.10.1177/027836499801700908
15.
Azizi
,
F.
, and
Houshanqi
,
N.
,
2003
. “
Sensor Integration for Mobile Robot Position Determination
,”
Proceedings of IEEE International Conference Systems, Man and Cybernetics
, Washington, DC, pp.
1136
1140
.
16.
N.
Megiddo
,
1987
, “
On the Complexity of Linear Programming
,”
Advances in Economic Theory, Fifth World Congress
,
Bewley
,
T. F.
, ed.,
Cambridge University Press
,
USA
, pp.
225
268
.
17.
Chen
,
C.
,
2000
, “
A Linear Programming Approach for Proximity and Collision Avoidance of Polyhedral Objects
,” Ph.D. Dissertation, University of Wisconsin-Madison, Madison, WI.
18.
Dantzig
,
G.
,
1963
,
Linear Programming and Extensions
,
Princeton University Press
,
Princeton, NJ
.
You do not currently have access to this content.