In every set of assembled products, there are geometrical variations and deviations from nominal dimensions. This can lead to products that are difficult to assemble or products not fulfilling functional or aesthetical requirements. In several industries, variation simulation is used to predict assembly variation in the development phase. This analysis is usually done under room temperature conditions only. However, for some materials, such as plastics, the thermal expansion can be significant in the intended environmental span of the product. In an assembly, this can lead to thermal stresses and parts that will deform. To avoid this problem, locating schemes need to be designed to allow for the right behavior while exposed to varying temperatures. In this work, the effect of thermal expansion is studied in the context of variation simulation. A virtual tool for this purpose is also presented. Two case studies from the automotive industry are used where the combined effect of thermal expansion and assembly variation is analyzed. It is shown that it may not be sufficient to simply add the result from thermal analysis to assembly variation. Hence, to assure the geometrical and functional quality of assembled products during usage variation simulations need to be combined with thermal expansion simulation.

References

References
1.
Maropoulos
,
P. G.
, and
Ceglarek
,
D.
,
2010
, “
Design Verification and Validation in Product Lifecycle
,”
CIRP Ann.
,
52
(
2
), pp.
740
759
.10.1016/j.cirp.2010.05.005
2.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Carlson
,
J.
, “
Virtual Geometry Assurence for Effective Product Realisation
,”
Proceedings of First Nordic Conference on Product Lifecycle Management-NordPLM'06
.
3.
Lorin
,
S.
,
Forslund
,
K.
, and
Söderberg
,
R.
, “
Investigating the Role of Simulation for Robust Plastic Design
,”
Proceedings of Norddesign
.
4.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Dahlström
,
S.
,
2006
, “
Computer-Aided Robustness Analysis for Compliant Assemblies
,”
J. Eng. Design
,
17
(
5
), pp.
411
428
.10.1080/09544820500275800
5.
Söderberg
,
R.
, and
Carlson
,
J.
, “
Locating Scheme Analysis for Robust Assembly and Fixture Design
,”
Proceedings of ASME Design Engineering Technical Conferences
.
6.
Huang
,
M. S.
, and
Lin
,
T. Y.
,
2008
, “
An Innovative Regression Model-Based Searching Method for Setting the Robust Injection Molding Parameters
,”
J. Mater. Process. Technol.
,
198
(
1–3
), pp.
436
444
.10.1016/j.jmatprotec.2007.07.022
7.
Chen
,
C.-P.
,
Chuang
,
M.-T.
,
Hsiao
,
Y.-H.
,
Yang
,
Y.-K.
, and
Tsai
,
C.-H.
,
2009
, “
Simulation and Experimental Study in Determining Injection Molding Process Parameters for Thin-Shell Plastic Parts Via Design of Experiments Analysis
,”
Expert Sys. Applic.
,
36
(
7
), pp.
10752
10759
.10.1016/j.eswa.2009.02.017
8.
Ozcelik
,
B.
, and
Erzurumlu
,
T.
,
2006
, “
Comparison of the Warpage Optimization in the Plastic Injection Molding Using ANOVA, Neural Network Model and Genetic Algorithm
,”
J. Mater. Process. Technol.
,
171
(
3
), pp.
437
445
.10.1016/j.jmatprotec.2005.04.120
9.
Oktem
,
H.
,
Erzurumlu
,
T.
, and
Uzman
,
I.
,
2007
, “
Application of Taguchi Optimization Technique in Determining Plastic Injection Molding Process Parameters for a Thin Shell Part
,”
Mater. Des.
,
28
(
4
), pp.
1271
1278
.10.1016/j.matdes.2005.12.013
10.
Tang
,
S. H.
,
Tan
,
Y. J.
,
Sapuan
,
S. M.
,
Sulaiman
,
S.
,
Ismail
,
N.
, and
Samin
,
R.
,
2007
, “
The Use of Taguchi Method in the Design of Plastic Injection Mould for Reducing Warpage
,”
J. Mater. Process. Technol.
,
182
, pp.
418
426
.10.1016/j.jmatprotec.2006.08.025
11.
Kazmer
,
D.
, and
Roser
,
C.
,
1999
, “
Evaluation of Product and Process Design Robustness
,”
Res. Eng. Des.
,
11
(
1
), pp.
20
30
.10.1007/s001630050002
12.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
368
374
.10.1115/1.2831115
13.
Camelio
,
J. A.
,
Hu
,
J. S.
, and
Ceglarek
,
D.
,
2003
, “
Modeling Variation Propagation of Multi-Station Assembly System With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.10.1115/1.1631574
14.
Camelio
,
J. A.
,
Hu
,
J. S.
, and
Ceglarek
,
D.
,
2002
, “
Impact of Fixture Design on Sheet Metal Assembly Variation
,”
J. Manuf. Syst.
,
23
(
3
), pp.
182
192
.10.1016/S0278-6125(05)00006-3
15.
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
, “
Tolerance Simulation of Compliant Sheet Metal Assemblies Using Automatic Node-Based Contact Detection
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
.
16.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2004
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influencing Coefficient With Contact Modeling
,”
Proceedings of ASME 2004 International Mechanical Engineering Congress and Exposition
.
You do not currently have access to this content.