Optimal design of complex engineering systems is challenging because numerous design variables and constraints are present. Dynamic changes in design requirements and lack of complete knowledge of subsystem requirements add to the complexity. We propose an enhanced distributed pool architecture to aid distributed solving of design optimization problems. The approach not only saves solution time but is also resilient against failures of some processors. It is best suited to handle highly constrained design problems, with dynamically changing constraints, where finding even a feasible solution (FS) is challenging. In our work, this task is distributed among many processors. Constraints can be easily added or removed without having to restart the solution process. We demonstrate the efficacy of our method in terms of computational savings and resistance to partial failures of some processors, using two mixed integer nonlinear programming (MINLP)-class mechanical design optimization problems.

References

References
1.
Roy
,
G.
,
Lee
,
H.
,
Welch
,
J.
,
Zhao
,
Y.
,
Pandey
,
V.
, and
Thurston
,
D.
,
2009
, “
A Distributed Pool Architecture for Genetic Algorithms
,”
IEEE Conference on Evolutionary Computation
,
Trondheim, Norway
.
2.
Harrington
,
J. E.
,
Hobbs
,
B. F.
,
Pang
,
J. S.
,
Liu
,
A.
, and
Roch
,
G.
,
2005
, “
Collusive Game Solutions via Optimization
,”
Math. Program. Ser. B
,
104
, pp.
407
436
.10.1007/s10107-005-0622-3
3.
Facchinei
,
F.
, and
Pang
,
J. S.
,
2003
,
Finite-Dimensional Variational Inequalities and Complementarity Problems
, Vols.
I and II
,
Springer-Verlag
,
New York
.
4.
Forrester
,
A. I. J.
,
Sobester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design via Surrogate Modelling a Practical Guide
,
John Wiley & Sons
, New York.
5.
Wujek
,
B.
,
Renaud
,
J.
, and
Batill
,
S.
,
1997
, “
A Concurrent Engineering Approach for Multidisciplinary Design in a Distributed Computing Environment
,”
Multidisciplinary Design Optimization: State of the Art
,
N.
Alexandrov
and
M. Y.
Hussaini
, eds.,
SIAM
, Philadelphia, PA.
6.
Braun
,
R.
,
1996
, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” Ph.D. dissertation,
Stanford University
,
Palo Alto, CA
.
7.
Kim
,
H. M.
,
2001
, “
Target Cascading in Optimal System Design
,” Ph.D. dissertation,
University of Michigan
,
Ann Arbor, Michigan
.
8.
Kroo
,
I.
,
2006
, Distributed Multidisciplinary Design and Collaborative Optimization Multidisciplinary Design Consortium Workshop, Stanford University, CA. Available at: http://acdl.mit.edu/mdo/mdo_06/MDOarchitectures2.pdf
9.
Sellar
,
R.
,
Batill
,
S.
, and
Renaud
,
J.
,
1996
, “
Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary System Design
,”
34th AIAA Aerospace Sciences Meeting
, AIAA Paper No. 96-0714.
10.
Wujek
,
B. A.
,
Renaud
,
J. E.
,
Batill
,
S. M.
, and
Brockman
,
J. B.
,
1996
, “
Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed Computing Environment
,”
Concurr. Eng.
,
4
, pp.
361
377
.10.1177/1063293X9600400405
11.
Nayyer
,
S.
,
2005
, “
An Application of Parallel Computation to Collaborative Optimization
,” M.S. thesis,
Louisiana State University
,
Baton Rouge LA
.
12.
Liu
,
H.
,
Chen
,
W.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Kim
,
H. M.
,
2006
, “
Probabilistic Analytical Target Cascading—A Moment Matching Formulation for Multilevel Optimization Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
991
1000
.10.1115/1.2205870
13.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J.
,
2008
, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051402
.10.1115/1.2838334
14.
Gurnani
,
A.
, and
Lewis
,
K.
,
2008
, “
Collaborative, Decentralized Engineering Design at the Edge of Rationality
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121101
.10.1115/1.2988479
15.
Herrmann
,
J.
,
2009
, “
Separating Design Optimization Problems for Bounded Rational Designers
,”
ASME International Design Engineering Technical Conferences
,
San Diego, CA
.
16.
Widger
,
J.
, and
Grosu
,
D.
,
2009
, “
Parallel Computation of Nash Equilibria in N-Player Games
,”
International Conference on Computational Science and Engineering
,
Vancouver BC, Canada
.
17.
Hula
,
A.
,
Jalali
,
K.
,
Hamza
,
K.
,
Skerlos
,
S. J.
, and
Saitou
,
K.
,
2003
, “
Multi-Criteria Decision-Making for Optimization of Product Disassembly Under Multiple Situations
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
5303
5313
.10.1021/es0345423
18.
Deb
,
K.
, and
Jain
,
S.
,
2003
, “
Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
609
619
.10.1115/1.1596242
19.
Michalek
,
J. J.
,
Papalambros
,
P. Y.
, and
Skerlos
,
S. J.
,
2004
, “
A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1062
1070
.10.1115/1.1804195
20.
Malkhi
,
D.
,
Reiter
,
M.
,
Wool
,
A.
, and
Wright
,
R.
,
2001
, “
Probabilistic Quorum Systems
,”
Inf. Comput.
,
170
(
2
), pp.
184
206
.10.1006/inco.2001.3054
21.
Lee
,
H.
, and
Welch
,
J. L.
,
2005
, “
Randomized Registers and Iterative Algorithms
,”
Distrib. Comput.
,
17
(
3
), pp.
209
221
.10.1007/s00446-004-0106-3
22.
Dorigo
,
M.
, and
Gambardella
,
L. M.
,
1997
, “
Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem
,”
IEEE Trans. Evol. Comput.
,
1
, pp.
53
66
.10.1109/4235.585892
23.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley Publishing Company
, pp.
197
199
.
24.
Colorni
,
A.
,
Dorigo
,
M.
, and
Maniezzo
,
V.
,
1992
, “
Distributed Optimization by Ant Colonies
,”
Proceedings of the First European Conference on Artificial Life
,
MIT Press, Cambridge, MA
, pp.
134
142
.
25.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Stat. Comput.
,
4
, pp.
65
85
.10.1007/BF00175354
26.
Carriero
,
N.
, and
Gelernter
,
D.
,
1989
, “
Linda in Context
,”
Commun. ACM
,
32
(
4
), pp.
444
458
.10.1145/63334.63337
27.
Kreisselmeier
G.
, and
Steinhauser
R.
,
1979
, “
Systematic Control Design by Optimizing a Vector Performance Index
,”
International Federation of Active Controls Symposium on Computer-Aided Design of Control Systems
,
Zurich, Switzerland
.
28.
Poon
,
N. M. K.
, and
Martins
,
J. R.
,
2007
, “
An Adaptive Approach to Constraint Aggregation Using Adjoint Sensitivity Analysis
,”
J. Struct. Multidiscip. Optim.
,
34
, pp.
61
73
.10.1007/s00158-006-0061-7
29.
Hager
,
W.
, and
Phan
,
D.
,
2009
, “
An Ellipsoidal Branch and Bound Algorithm for Global Optimization
,”
SIAM J. Optim.
,
20
(
2
), pp.
740
758
.10.1137/080729165
30.
Dabbene
,
F.
,
Gay
,
P.
, and
Polyak
,
B. T.
,
2003
, “
Recursive Algorithms for Inner Ellipsoidal Approximation of Convex Polytopes
,”
Automatica
,
39
(
10
), pp.
1773
1781
.10.1016/S0005-1098(03)00180-8
31.
Farhang-Mehr
,
A.
, and
Azarm
,
S.
,
2003
, “
An Information-Theoretic Entropy Metric for Assessing Multi-Objective Optimization Solution Set Quality
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
655
663
.10.1115/1.1623186
32.
Simpson
,
T.
,
1998
, “
A Concept Exploration Method for Product Family Design
,” Ph.D. dissertation,
Georgia Institute of Technology
.
You do not currently have access to this content.