A new graph grammar based reasoning is proposed to reason about the manufacturability of 3D solid models. The knowledge captured in the graph grammar rules serves as a virtual machinist in its ability to recognize arbitrary geometries and match them to various machining operations. For a given part, its 3D CAD geometry is first decomposed into multiple subvolumes, where each is assumed to be machined in one operation. The decomposed part is then converted into a graph so that the graph-grammar rules can perform further reasoning and determine the machining details. A candidate plan is a feasible sequence of all of the necessary machining operations needed to manufacture this part. For each operation, the rules determine the face on the part that the tool enters, the type of tools used, the type of machine used, and how the part is fixed within the machine. If a given geometry is not machinable, the rules will fail to find a complete manufacturing plan for all of the subvolumes. As a result of this reasoning, designers can quickly get insights into how a part can be made and how it can be improved (e.g., change features to reduce time and cost) based upon the feedback of the rules. A variety of tests on this algorithm on both simple and complex engineering parts show its effectiveness and efficiency.

References

References
1.
Eftekharian
,
A.
, and
Campbell
,
M. I.
,
2012
, “
Convex Decomposition of 3D Solid Models for Automated Manufacturing Process Planning Applications
,”
ASME International Design Engineering Technical Conferences IDETC
,
Chicago, IL
.
2.
Russell
,
E. L.
,
1967
,
Automated Manufacturing Planning
,
American Management Association
,
New York
.
3.
Marri
,
H. B.
,
Gunasekaran
A.
, and
Grieve
,
R. J.
,
1998
, “
Computer-Aided Process Planning: A State of Art
,”
Int. J. Adv. Manufacturing Technol.
,
14
, pp. 261–268.10.1007/BF01199881
4.
Berenji
,
H. R.
, and
Khoshnevis
,
B.
,
1986
, “
Use of Artificial Intelligence in Automated Process Planning
,”
5
(
2
), pp. 47–55.
5.
Chryssolouris
,
G.
, and
Chan
,
S.
,
1985
, “
An Integrated Approach to Process Planning and Scheduling
,”
Ann. CIRP
,
34
(
1
), pp. 413–417.10.1016/S0007-8506(07)61801-0
6.
Wang
,
H.-p.
, and
Wysk
,
R. A.
,
1988
, “
A Knowledge-Based Approach For Automated Process Planning
,”
Int. J. Prod. Res.
,
26
, pp. 994–1014.10.1080/00207548808947915
7.
Sharma
,
R.
, and
Gao
,
J.
,
2002
, “
Implementation of Step 224 in an Automated Manufacturing Planning System
,”
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Sage Journals, Thousand Oaks, CA
,
216
(
9
), pp.
1277
1289
.10.1243/095440502760291826
8.
Allen
,
R. D.
,
Harding
J. A.
, and
Newman
,
S. T.
,
2005
, “
The Application of STEP-NC Using Agent-Based Process Planning
,”
Taylor & Francis Group, Boca Raton, FL
,
43
, pp.
655
670
.10.1080/00207540412331314406
9.
Ehrig
,
H.
,
Engels
,
G.
,
Kreowski
,
H.-J.
, and
Rozenberg
,
G.
,
1999
,
Handbook of Graph Grammars and Computing by Graph Transformations
,
World Science Publication Co.
,
NJ
.
10.
Krause
,
F.-L.
,
Kimura
,
F.
,
Kjellberg
,
T.
,
Lu
,
S.-Y.
,
Wolf
,
V. d.
,
Alting
,
L.
,
ElMaraghy
,
H.
,
Eversheim
,
W.
,
Iwata
,
K.
,
Suh
,
N.
,
Tipnis
,
V.
, and
Week
,
M.
,
1993
, “
Product Modeling
,”
Ann. CIRP
,
42
(
2
), pp. 695–716.
11.
Rockwood
,
A. P.
,
1996
, “
Geometric Primitives
,”
ACM Comput. Surv.
,
28
(
1
), pp.
149
151
.10.1145/234313.234377
12.
Han
,
J.
,
Pratt
,
M.
, and
Regli
,
W. C.
,
2000
, “
Manufacturing Feature Recognition from Solid Models: A Status Report
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp. 782–796.10.1109/70.897789
13.
Shah
,
J.
1991
, “
An Assessment of Features Technology
,”
Comput.-Aided Des.
,
23
(
5
) Elsevier, The Netherlands, pp. 331–343.
14.
Shah
,
J. J.
,
Anderson
,
D.
,
Kim
,
Y. S.
, and
Joshi
,
S.
,
2001
, “
A Discourse on Geometric Feature Recognition From CAD Models
,”
ASME, Journal of Computing and Information Science in Engineering
,
1
(
1
), pp.
41
51
.10.1115/1.1345522
15.
Somashekar Subrahmanyam
,
M. W.
,
1995
, “
An Overview of Automatic Feature Recognition Techniques For Computer-Aided Process Planning
,”
Comput Ind.
,
26
, pp.
1
21
.10.1016/0166-3615(95)80003-4
16.
Babic
,
B.
,
Nesic
,
N.
, and
Miljkovic
,
Z.
,
2008
, “
A Review of Automated Feature Recognition With Rule-Based Pattern Recognition
,”
Comput Ind.
,
59
, pp.
321
337
.10.1016/j.compind.2007.09.001
17.
Marefat
,
M.
, and
Kashyap
,
R. L.
,
1990
, “
Geometric Reasoning for Recognition of 3-D Object Features
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
12
(
10
), pp.
949
965
.10.1109/34.58868
18.
Timo Laakko
,
M. M.
,
1993
, “
Feature Modelling by Incremental Feature Recognition
,”
Computer-Aided Design
,
25
(
8
), pp. 479–492.10.1016/0010-4485(93)90079-4
19.
Joshi
,
S.
, and
Chang
,
T. C.
,
1988
, “
Graph Based Heuristics For Recognition Of Machined Features From A 3-D Solid Model
,”
Comput.-Aided Des.
,
20
, pp.
58
66
.10.1016/0010-4485(88)90050-4
20.
Trika
,
S. N.
, and
Kashyap
,
R. L.
,
1994
, “
Geometric Reasoning for Extraction of Manufacturing Features In Iso-Oriented Polyhedrons
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
16
(
11
), pp.
1087
1100
.10.1109/34.334388
21.
Kumar
,
B. V. S.
, and
Rao
,
C. S.
,
2011/2012
, “
Automatic Extraction of Three Dimensional Prismatic Machining Features From CAD Model
,”
Int. J. Comp. Sci. Comm. Netw.
,
1
(
3
), pp.
285
296
. Available at: http://www.ijcscn.com/vol1issue3.php
22.
Sadaiah
,
M.
,
Yadav
,
D. R.
,
Mohanram
,
P. V.
, and
Radhakrishnan
,
P.
,
2002
, “
A Generative CAPP System For Prismatic Components
,”
Int. J. Adv. Manuf. Technol.
,
20
, pp.
709
719
.10.1007/s001700200228
23.
Bouzakis
,
H. K.-D.
, and
Andreadis
,
G.
,
2000
, “
A Feature-Based Algorithm For Computer Aided Process Planning For Prismatic Parts
,”
Int. J. Prod. Eng. Comput.
,
3
(
3
), pp.
17
22
.
24.
Henderson
,
M.
, and
Anderson
,
D.
,
1984
, “
Computer Recognition and Extraction of Form Features: A CAD/CAPP Link
,”
Comput. Ind.
,
5
, pp.
329
339
.10.1016/0166-3615(84)90056-3
25.
Sunil
,
V. B.
, and
Pande
,
S. S.
,
2008
, “
Automatic Recognition Of Features From Freeform Surface CAD Models
,”
Comput.-Aided Des.
,
40
, pp.
502
517
.10.1016/j.cad.2008.01.006
26.
Kim
,
Y. S.
,
Wang
,
E.
,
Lee
,
C. S.
, and
Rho
,
H. M.
,
1998
,
Feature-Based Machining Precedence Reasoning and Sequence Planning
,
Atlanta, GA
.
27.
Shapiro
,
V.
,
1999
, “
Well-Formed Set Representations Of Solids
,”
Int. J. Comput. Geom. Appl. (IJCGA)
,
9
, pp.
125
150
.10.1142/S0218195999000108
28.
Tor
,
S.
, and
Middleditch
,
A. E.
,
1984
, “
Convex Decomposition of Simple Polygons
,”
ACM Trans. Graph.
,
3
, pp.
244
265
.10.1145/357346.357348
29.
Dobkin
,
D.
,
Guibas
,
L.
, and
Hershberger
,
J.
,
1989
, “
An Efficient Algorithm for Finding the CSG Representation of a Simple Polygon
,” SIGGRAPH '88 Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, ACM, NY., pp. 31–40.
30.
Woo
,
T.
,
1982
, “
Feature Extraction by Volume Decomposition
,”
CAD/CAM Technology in Mechanical Engineering
, Proc. Conf. CAD/CAM Technology in Mechanical Engineering, MIT, Cambridge, MA, pp. 76–94.
31.
Kim
Y.
, and
Wilde
,
D.
,
1992
, “
Convex Hulls and Local Cause of Its Non-Convergence
,”
ASME, J. Mech Des.
,
114
(
3
), pp.
459
467
.10.1115/1.2926574
32.
Kim
,
Y.
1992
, “
Recognition of Form Features Using Convex Decomposition
,”
Comput.-Aided Des.
, Elsevier, The Netherlands,
24
(
9
), pp.
461
476
.10.1016/0010-4485(92)90027-8
33.
Ertelt
,
C.
, and
Shea
,
K.
,
2009
,
An Application of Shape Grammars to Planning For CNC Machining
,
San Diego, CA
.
34.
Marinescu
,
R.
, and
Dechter
,
R.
,
2004
, “
And/Or Tree Search for Constraint Optimization
,”
Proceedings of the 6th International Workshop on Preferences and Soft Constraints
.
35.
Campbell
,
M. I.
, “
GraphSynth2: Software For Generative Grammars and Creative Search
,” 7/2/2012, http://graphsynth.com/
36.
Blarigan
,
B. V.
,
Campbell
,
M. I.
,
Eftekharian
,
A. A.
, and
Kurtoglu
,
T.
,
2012
, “
Automated Estimation of Time and Cost For Determining Optimal Machining Plans
,”
ASME International Design Engineering Technical Conferences IDETC, DETC12-70338
,
Chicago, IL
.
37.
“FeatureCAM,” Delcam Advanced Manufacturing Solutions
, http://www.featurecam.com/ (Accessed).
38.
Blarigan
,
B. V.
,
2012
, “
Automated Estimation of Time and Cost for Determining Optimal Machining Plans
,” University of Texas, Ph.D thesis, Austin, TX. Available at: http://hdl.handle.net/2152/ETD-UT-2012-05-5246
39.
Eftekharian
,
A. A.
,
Fu
,
W.
,
Manion
,
C.
, and
Campbell
,
M. I.
,
2013
, “
Automatic Reasoning for Defining Lathe Operations for Arbitrary Geometries
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conference & Computers and Information in Engineering Conference
,
Portland, OR
.
You do not currently have access to this content.