Due to the various requirements of users and large volume of machine tools, most machine tool manufacturers are adopting the small-lot production mode, which largely prolongs the product development cycle. To raise the design efficiency and reduce the complexity, modular design is becoming widely used in serial production of machine tools, especially large gantry machining centers. In this paper, we introduced a function and structure decomposition method to construct the function and structure correlations between components and employed a clustering method based on atomic theory to solve the module clustering problems. The clustering algorithm is modified by integrating the function and structure matrices in order that it applies to modularization of large machine tools. Furthermore, an evaluation method based on the concept of entropy is proposed here to evaluate and optimal select module partition schemes. Finally, we took the large gantry machining center QLMT6300 as an example and compiled the program with Microsoft Visual C++ 6.0 to illustrate the validity of the methods proposed. The presented clustering and evaluation method can be easily applied to different machine tools for modular design, reducing the work amount of designers.

References

References
1.
Bazrov
,
B. M.
,
2011
, “
Modular Design of Machine Tools
,”
Russ. Eng. Res.
,
31
(
11
), pp.
1084
1086
.10.3103/S1068798X11110049
2.
Jose
,
A.
, and
Tollenaere
,
M.
,
2005
, “
Modular and Platform Methods for Product Family Design: Literature Analysis
,”
J. Intell. Manuf.
,
16
(
3
), pp.
371
390
.10.1007/s10845-005-7030-7
3.
Kusiak
,
A.
, and
Huang
,
C.-C.
,
1996
, “
Development of Modular Products
,”
IEEE T. Compon. Pack. T.
,
19
(
4
), pp.
523
538
.10.1109/95.554934
4.
Huang
,
C.-C.
, and
Kusiak
,
A.
,
1998
, “
Modularity in Design of Products and Systems
,”
IEEE T. Syst. Man Cybern.
,
28
(
1
), pp.
66
77
.10.1109/3468.650323
5.
Yu
,
S.
,
Yang
,
Q.
,
Tao
,
J.
,
Tian
,
X.
, and
Yin
,
F.
,
2011
, “
Product Modular Design Incorporating Life Cycle Issues—Group Genetic Algorithm (GGA) Based Method
,”
J. Clean. Prod.
,
19
(
9–10
), pp.
1016
1032
.10.1016/j.jclepro.2011.02.006
6.
Gershenson
,
J. K.
,
Prasad
,
G. J.
, and
Allamneni
,
S.
,
1999
, “
Modular Product Design: A Life-Cycle View
,”
J. Integ. Des. Process Sci.
,
3
(
4
), pp.
13
26
.
7.
Tseng
,
H.
,
Chang
,
C.
, and
Li
,
J.
,
2008
, “
Modular Design to Support Green Life-Cycle Engineering
,”
Expert Syst. Appl.
,
34
(
4
), pp.
2524
2537
.10.1016/j.eswa.2007.04.018
8.
Ji
,
Y.-J.
,
Chen
,
X.-B.
,
Qi
,
G.-N.
, and
Song
,
L.-W.
,
2012
, “
Modular Design Involving Effectiveness of Multiple Phases for Product Life Cycle
,”
Int. J. Adv. Manuf. Technol
(in press).10.1007/s00170-012-4432-5
9.
Stone
,
R.
,
Wood
,
K.
, and
Crawford
,
R.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architectures
,”
Des. Stud.
,
21
(
1
), pp.
5
31
.10.1016/S0142-694X(99)00003-4
10.
Stone
,
R.
,
Wood
,
K.
, and
Crawford
R.
,
2000
, “
Using Quantitative Functional Models to Develop Product Architectures
,”
Des. Stud.
,
21
(
3
), pp.
239
260
.10.1016/S0142-694X(99)00008-3
11.
Kreng
,
V. B.
, and
Lee
,
T.-P.
,
2004
, “
Modular Product Design With Grouping Genetic Algorithm—A Case Study
,”
Comput. Ind. Eng.
,
46
(
3
), pp.
443
460
.10.1016/j.cie.2004.01.007
12.
Pimmler
,
T. U.
, and
Eppinger
,
S. D.
,
1994
, “
Integration Analysis of Product Decompositions
,”
ASME, Design Engineering Division (Publication) DE,
68
, pp.
343
351
.
13.
Qian
,
X.
, and
Zhang
,
H. C.
,
2003
, “
Design for Environment: An Environmental Analysis Model for the Modular Design of Products
,”
IEEE International Symposium on Electronics and the Environment
, pp.
114
119
.
14.
Guo
,
W.
,
Liu
G. F.
, and
Zhang
,
L.
,
2010
, “
Research on Product's Green Module Partition for Whole Life Cycle
,”
J. Hefei Univ. Tech.
,
33
(
10
), pp.
1441
1445, 1449
.10.3969/j. issn. 1003-5060.2010.10.001
15.
Kuo
,
T. C.
,
Chang
,
S. H.
, and
Huang
,
S.
,
2006
, “
Environmentally Conscious Design by Using Fuzzy Multi-Attribute Decision-Making
,”
Int. J. Adv. Manuf. Tech.
,
29
(
5
), pp.
419
425
.10.1007/s00170-005-2540-1
16.
Huang
,
H. H.
,
Liu
,
Z. F.
,
Wang
,
S. W.
,
Liu
,
G. F.
, and
Guo
,
W. X.
,
2006
,“
Research on Methodology of Modular Design for Recycling
,”
Trans. Chin. Soc. Ag. Mach.
,
37
(
12
), pp.
144
149
.
17.
Zhu
,
C.
,
Tang
,
D.
, and
Zhu
,
R.
,
2009
, “
Product Module Partition Based on Axiomatic Design
,”
Med Sci. Tech. Aerosp. Eng.
,
28
(
7
), pp.
926
930
.
18.
Gu
,
P.
,
Hashemian
,
M.
,
Sosale
,
S.
, and
Rivin
,
E.
,
1997
, “
An Integrated Modular Design Methodology for Life-Cycle Engineering
,”
CIRP Ann. Manuf. Tech.
,
46
(
1
), pp.
71
74
.10.1016/S0007-8506(07)60778-1
19.
Gu
,
P.
, and
Sosale
,
S.
,
1999
, “
Product Modularization for Life Cycle Engineering
,”
Robot. CIM Int. Manuf.
,
15
(
5
), pp.
387
401
.10.1016/S0736-5845(99)00049-6
20.
Yu
,
T.
,
Yassine
,
A.
, and
Goldberg
,
D.
,
2003
, “
A Genetic Algorithm for Developing Modular Product Architectures
,”
Proceedings of the ASME Design Engineering Technical Conference
,
3
, pp.
515
524
.
21.
Smith
,
S.
, and
Yen
,
C.-C.
,
2010
, “
Green Product Design Through Product Modularization Using Atomic Theory
,”
Robot. CIM Int. Manuf.
,
26
(
6
), pp.
790
798
.10.1016/j.rcim.2010.05.006
22.
Umeda
,
Y.
,
Fukushige
,
S.
, and
Tonoike
,
K.
,
2009
, “
Evaluation of Scenario-Based Modularization for Lifecycle Design
,”
CIRP Ann. Manuf. Tech.
,
58
(
1
), pp.
1
4
.10.1016/j.cirp.2009.03.083
You do not currently have access to this content.