This work presents a methodology for adaptive generation of 3D finite element meshes using geometric modeling with multiregions and parametric surfaces, considering a geometric model described by curves, surfaces, and volumes. This methodology is applied in the simulation of stress analysis of solid structures using a displacement-based finite element method and may be extended to other types of 3D finite element simulation. The adaptive strategy is based on an independent and hierarchical refinement of curves, surfaces, and volumes. From an initial model, new sizes of elements obtained from a discretization error analysis and from geometric restrictions are stored in a global background structure, a recursive spatial composition represented by an octree. Based on this background structure, the model's curves are initially refined using a binary partition algorithm. Curve discretization is then used as input for the refinement of adjacent surfaces. Surface discretization also employs the background octree-based refinement, which is coupled to an advancing front technique in the surface's parametric space to generate an unstructured triangulated mesh. Surface meshes are finally used as input for the refinement of adjacent volumetric domains, which also uses an advancing front technique but in 3D space. In all stages of the adaptive strategy, the refinement of curves, surface meshes, and solid meshes is based on estimated discretization errors associated with the mesh of the previous step in the adaptive process. In addition, curve and surface refinement takes curvature information into account. Numerical examples of simulation of engineering problems are presented in order to validate the methodology proposed in this work.

References

References
1.
Mackerle
,
J.
,
2001
, “
Error Estimates and Adaptive Finite Element Methods: A Bibliography (1990-2000)
,”
Eng. Comput.
,
18
, pp.
802
914
.10.1108/EUM0000000005788
2.
McRae
,
D. S.
,
2000
, “
r-Refinement Grid Adaptation Algorithms and Issues
,”
Comput. Methods Appl. Mech. Eng.
,
189
, pp.
1161
1182
.10.1016/S0045-7825(99)00372-2
3.
Xu
,
G.
,
Mourrain
,
B.
,
Duvigneau
,
R.
, and
Galligo
,
A.
,
2011
, “
Parametrization of Computational Domain in Isogeometric Analysis: Methods and Comparison
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
23–24
), pp.
2021
2031
.10.1016/j.cma.2011.03.005
4.
Kallinderis
,
Y.
, and
Vijayant
,
P.
,
1993
, “
Adaptive Refinement-Coarsening Scheme for Three-Dimensional Unstructured Meshes
,”
AIAA J.
,
43
(
8
), pp.
1440
1447
.10.2514/3.11793
5.
Muthukrishnan
,
N.
,
Shiakolas
,
P. S.
,
Nambiar
,
R. V.
, and
Lawrence
,
K. L.
,
1995
, “
Simple Algorithm for Adaptive Refinement of Three Dimensional Finite Element Tetrahedral Meshes
,”
AIAA J.
,
33
(
5
), pp.
928
932
.10.2514/3.12386
6.
Golias
,
N. A.
, and
Tsiboukis
,
T. D.
,
1994
, “
An Approach to Refining Three-Dimensional Tetrahedral Meshes Based on Delaunay Transformations
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
793
801
.10.1002/nme.1620370506
7.
Golias
,
N. A.
, and
Dutton
,
R. W.
,
1997
, “
Delaunay Triangulation and 3D Adaptive Mesh Generation
,”
Finite Elem. Anal. Design
,
25
, pp.
331
341
.10.1016/S0168-874X(96)00054-6
8.
Lee
,
C. K.
, and
Lo
,
S. H.
,
1997
, “
Automatic Adaptive Refinement Finite Element Procedure for 3D Stress Analysis
,”
Finite Elem. Anal. Design
,
25
, pp.
135
166
.10.1016/S0168-874X(96)00031-5
9.
Lee
,
C. K.
, and
Lo
,
S. H.
,
1999
, “
A Full 3D Finite Element Analysis Using Adaptive Refinement and PCG Solver With Back Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
170
, pp.
39
64
.10.1016/S0045-7825(98)00188-1
10.
Merrouche
,
A.
,
Selman
,
A.
, and
Knopf-Lenoir
,
C.
,
1998
, “
3D Adaptive Mesh Refinement
,”
Commun. Numer. Methods Eng.
,
14
(
5
), pp.
397
407
.10.1002/(SICI)1099-0887(199805)14:5<397::AID-CNM119>3.0.CO;2-D
11.
De Cougny
,
H. L.
, and
Shephard
,
M. S.
,
1999
, “
Parallel Refinement and Coarsening of Tetrahedral Meshes
,”
Int. J. Numer. Methods Eng.
,
46
, pp.
1101
1125
.10.1002/(SICI)1097-0207(19991110)46:7<1101::AID-NME741>3.0.CO;2-E
12.
Lee
,
C. K.
, and
Xu
,
Q. X.
,
2005
, “
A New Automatic Adaptive 3D Solid Mesh Generation Scheme for Thin-Walled Structures
,”
Int. J. Numer. Methods Eng.
,
62
, pp.
1519
1558
.10.1002/nme.1239
13.
Qian
,
J.
, and
Zhang
,
Y.
,
2012
, “
Automatic Unstructured All-Hexahedral Mesh Generation From b-Reps for Non-Manifold CAD Assemblies
,”
Eng. Comput.
,
28
, pp.
345
359
.10.1007/s00366-011-0232-z
14.
Zhang
,
Y.
,
Hughes
,
T. J.
, and
Bajaj
,
C. L.
,
2010
, “
An Automatic 3D Mesh Generation Method for Domains With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
5–8
), pp.
405
415
.10.1016/j.cma.2009.06.007
15.
Kettil
,
P.
,
Ekevid
,
T.
, and
Wiberg
,
N. E.
,
2003
, “
Towards Fully Mesh Adaptive FE-Simulations in 3D Using Multi-Grid Solver
,”
Comput. Struct.
,
81
, pp.
735
746
.10.1016/S0045-7949(02)00485-6
16.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
4135
4195
.10.1016/j.cma.2004.10.008
17.
Cavalcante-Neto
,
J. B.
,
Martha
,
L. F.
,
Menezes
, I
. F. M.
, and
Paulino
,
G. H.
,
1998
, “
A Methodology for Self-Adaptive Finite Method Analysis Using an Object Oriented Approach
,”
Proceedings of the 4th World Congress on Computational Mechanics (IV WCCM)
, pp.
1
20
.
18.
Baehmann
,
P. L.
, and
Shephard
,
M. S.
,
1989
, “
Adaptive Multiple-Level h-Refinement in Automated Finite Element Analysis
,”
Eng. Comput.
,
5
, pp.
235
247
.10.1007/BF02274215
19.
Cavalcante-Neto
,
J. B.
,
1998
, “
Mesh Generation and Error Estimative for Finite Element 3D Models With Crack
,” Ph.D. thesis, Pontifical University Catholic of Rio de Janeiro, Rio de Janeiro, Brazil.
20.
Xu
,
G.
,
Mourrain
,
B.
,
Duvigneau
,
R.
, and
Galligo
,
A.
,
2013
, “
Analysis-Suitable Volume Parameterization of Multi-Block Computational Domain in Isogeometric Applications
,”
Comput.-Aided Des.
,
45
(
2
), pp.
395
404
.10.1016/j.cad.2012.10.022
21.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method: The Basis
, 5th ed., Vol. 1,
Butterworth-Heinemann
,
Oxford, UK
.
22.
Zienkiewicz
,
O. C.
, and
Zhu
,
J. Z.
,
1992
, “
The Superconvergent Patch Recovery and a Posterior Error Estimates. Part 1: The Recovery Technique
,”
Int. J. Numer. Methods Eng.
,
33
, pp.
1331
1364
.10.1002/nme.1620330702
23.
Zienkiewicz
,
O. C.
, and
Zhu
,
J. Z.
,
1992
, “
The Superconvergent Patch Recovery and a Posterior Error Estimates. Part 2: Error Estimates and Adaptivity
,”
Int. J. Numer. Methods Eng.
,
33
, pp.
1365
1382
.10.1002/nme.1620330703
24.
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD: A Practical Guide. The Morgan Kaufmann Series in Computer Graphics
,
Elsevier Science
,
New York
.
25.
Quadros
,
W. R.
,
Vyas
, V
.
,
Brewer
,
M.
,
Owen
,
S. J.
, and
Shimada
,
K.
,
2010
, “
A Computational Framework for Automating Generation of Sizing Function in Assembly Meshing via Disconnected Skeletons
,”
Eng. Comput.
,
26
(
3
), pp.
231
247
.10.1007/s00366-009-0164-z
26.
Knuth
,
D.
,
1997
,
The Art of Computer Programming Volume 1. Fundamental Algorithms
,
Addison-Wesley
,
Reading, MA
.
27.
Miranda
,
A. C. O.
, and
Martha
,
L. F.
,
2002
, “
Mesh Generation on High-Curvature Surfaces Based on a Background Quadtree Structure
,”
Proceedings of 11th International Meshing Roundtable
, pp.
333
341
.
28.
Cavalcante-Neto
,
J. B.
,
Wawrzynek
,
P. A.
,
Carvalho
,
M. T. M.
,
Martha
,
L. F.
, and
Ingraffea
,
A. R.
,
2001
, “
An Algorithm for Three-Dimensional Mesh Generation for Arbitrary Regions With Cracks
,”
Eng. Comput.
,
17
(
1
), pp.
75
91
.10.1007/PL00007196
29.
Foley
,
T. A.
, and
Nielson
,
G. M.
,
1989
,
Knot Selection for Parametric Spline Interpolation. Mathematical Methods in Computer Aided Geometric Design
,
Academic
,
New York
.
30.
Cavalcante-Neto
,
J. B.
,
Martha
,
L. F.
,
Wawrzynek
,
P. A.
, and
Ingraffea
,
A. R.
,
2005
, “
A Back-Tracking Procedure for Optimization of Simplex Meshes
,”
Commun. Numer. Methods Eng.
,
21
(
12
), pp.
711
722
.10.1002/cnm.786
31.
Paulino
,
G. H.
,
Menezes
, I
. F. M.
,
Cavalcante-Neto
,
J. B.
, and
Martha
,
L. F.
,
1999
, “
A Methodology for Adaptive Finite Element Analysis: Towards an Integrated Computational Environment
,”
Computat. Mech.
,
23
, pp.
361
388
.10.1007/s004660050416
32.
Boroomand
,
B.
, and
Zienkiewicz
,
O. C.
,
1997
, “
Recovery by Equilibrium in Patches (REP)
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
137
164
.10.1002/(SICI)1097-0207(19970115)40:1<137::AID-NME57>3.0.CO;2-5
33.
Martha
,
L. F.
, and
Parente
,
E.
, Jr
.,
2002
, “
An Object-Oriented Framework for Finite Element Programming
,”
Proceedings of the 5th World Congress on Computational Mechanics
.
34.
Lee
,
C. K.
, and
Lo
,
S. H.
,
1997
, “
Automatic Adaptive 3-D Finite Element Refinement Using Different-Order Tetrahedral Elements
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
2195
2226
.10.1002/(SICI)1097-0207(19970630)40:12<2195::AID-NME153>3.0.CO;2-3
35.
Cuilliere
,
J.
,
Francois
, V
.
, and
Drouet
,
J.
,
2012
, “
Automatic 3D Mesh Generation of Multiple Domains for Topology Optimization Methods
,”
Proceedings of 21st International Meshing Roundtable
, pp.
243
249
.
36.
Krysl
,
P.
,
1996
, “
Computational Complexity of the Advancing Front Triangulation
,”
Eng. Comput.
,
12
, pp.
16
22
.10.1007/BF01200258
37.
Lohner
,
R.
, and
Parikh
,
P.
,
1988
, “
Generation of Three-Dimensional Unstructured Grids by the Advancing-Front Method
,”
Int. J. Numer. Methods Fluids
,
8
, pp.
1135
1149
.10.1002/fld.1650081003
38.
Bonet
,
J.
, and
Peraire
,
J.
,
1991
, “
An Alternating Digital Tree (ADT) Algorithm for 3D Geometric Search and Intersection Problems
,”
Int. J. Numer. Methods Eng.
,
31
, pp.
1
17
.10.1002/nme.1620310102
39.
Jin
,
H.
, and
Tanner
,
R. I.
,
1993
, “
Generation of Unstructured Tetrahedral Meshes by Advancing Front Technique
,”
J. Numer. Methods Eng.
,
36
, pp.
1805
1823
.10.1002/nme.1620361103
40.
Moller
,
P.
, and
Hansbo
,
P.
,
1995
, “
On Advancing Front Mesh Generation in Three Dimensions
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
1805
1823
.10.1002/nme.1620382102
41.
Gosselin
,
S.
, and
Ollivier-Gooch
,
C.
,
2011
, “
Tetrahedral Mesh Generation Using Delaunay Refinement With Non-Standard Quality Measures
,”
Int. J. Numer. Methods Eng.
,
87
, pp.
795
820
.10.1002/nme.3138
42.
Klingner
,
B. M.
, and
Shewchuk
,
J. R.
,
2007
, “
Aggressive Tetrahedral Mesh Improvement
,”
Proceedings of 16th International Meshing Roundtable
, pp.
3
23
.
43.
Alliez
,
P.
,
Cohen-Steiner
,
D.
,
Yvinec
,
M.
, and
Desbrun
,
M.
,
2005
, “
Variational Tetrahedral Meshing
,”
ACM Trans. Graphics
,
24
(
3
), pp.
617
625
.10.1145/1073204.1073238
You do not currently have access to this content.