This paper validates that a previously published formal representation of function structure graphs actually supports the reasoning that motivated its development in the first place. In doing so, it presents the algorithms to perform those reasoning, provides justification for the reasoning, and presents a software implementation called Concept Modeler (ConMod) to demonstrate the reasoning. Specifically, the representation is shown to support constructing function structure graphs in a grammar-controlled manner so that logical and physics-based inconsistencies are prevented in real-time, thus ensuring logically consistent models. Further, it is demonstrated that the representation can support postmodeling reasoning to check the modeled concepts against two universal principles of physics: the balance laws of mass and energy, and the principle of irreversibility. The representation in question is recently published and its internal ontological and logical consistency has been already demonstrated. However, its ability to support the intended reasoning was not validated so far, which is accomplished in this paper.

References

References
1.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2012
, “
A Formal Representation of Function Structure Graphs for Computer-Directed Modeling and Conservation-Based Reasoning
,”
ASME J. Comput. Inf. Sci. Eng.
(in press).
2.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2011
, “
Exploring Potentials for Conservational Reasoning Using Topologic Rules of Function Structure Graphs
,”
The 18th International Conference on Engineering Design
,
Copenhagen
, Aug. 15–18.
3.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2011
, “
A Protocol to Formalize Function Verbs to Support Conservation-Based Model Check Reasoning
,”
J. Eng. Des.
,
22
, pp.
765
788
.10.1080/09544828.2011.603295
4.
Sen
,
C.
,
2011
, “
A Formal Representation of Mechanical Functions to Support Physics-Based Computational Reasoning in Early Mechanical Design
,” Doctoral dissertation,
Department of Mechanical Engineering, Clemson University
,
Clemson, South Carolina
.
5.
Thomke
,
S.
, and
Fujimoto
,
T.
,
2000
, “
The Effect of “Front-Loading” Problem-Solving on Product Development Performance
,”
J. Prod. Innovation Manage.
,
17
(
2
), pp.
128
142
.10.1016/S0737-6782(99)00031-4
6.
Otto
,
K. N.
, and
Wood
,
K. L.
,
2001
,
Product Design Techniques in Reverse Engineering and New Product Development
,
Prentice-Hall
,
Upper Saddle River, NJ
.
7.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer–Verlag London Limited
,
London, UK
.
8.
Ullman
,
D. G.
,
1992
,
The Mechanical Design Process
,
McGraw-Hill
,
New York
.
9.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2008
,
Product Design and Development
,
McGraw-Hill
,
New York, NY
.
10.
Sridharan
,
P.
, and
Campbell
,
M. I.
,
2005
, “
A Study on the Grammatical Construction of Function Structures
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
19
(
3
), pp.
139
160
.
11.
Nagel
,
R. L.
,
2011
, “
A Design Framework for Identifying Automation Opportunities
,” Doctoral dissertation,
School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University
,
Corvallis, OR
.
12.
Nagel
,
R. L.
,
Perry
,
K. L.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2009
, “
FunctionCAD: A Functional Modeling Application Based on the Function Design Framework
,”
International Design Engineering Technical Conferences
,
San Diego, CA
.
13.
Summers
,
J. D.
,
2005
, “
Reasoning in Engineering Design
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Long Beach, California
.
14.
Summers
,
J. D.
, and
Shah
,
J. J.
,
2004
, “
Representation in Engineering Design: A Framework for Classification
,”
ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
, Sept. 28–Oct. 2.
15.
Luger
,
G. F.
,
2002
,
Artificial Intelligence: Structures and Strategies for Complex Problem Solving
,
Addison-Wesley
,
Essex, England
.
16.
Reichenbach
,
H.
,
1947
,
Elements of Symbolic Logic
,
Dover Publications Inc.
,
New York
.
17.
Tarski
,
A.
,
1946
,
Introduction to Logic and to the Methodology of Deductive Sciences
,
Dover Publications, Inc.
,
New York
.
18.
Corney
,
J.
, and
Lim
,
T.
,
2002
,
3D Modeling With ACIS
,
Saxe-Coburg Publications
, UK. Available at: http://www.saxe-coburg.co.uk/pubs/descrip/acis.htm
19.
Bohm
,
M. R.
,
Stone
,
R. B.
, and
Szykman
,
S.
,
2005
, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
J. Comput. Inf. Sci. Eng.
,
5
(
4
), pp.
360
372
.10.1115/1.1884618
20.
Bohm
,
M.
,
Stone
,
R. B.
, and
Simpson
,
T.
,
2008
, “
Introduction of a Data Schema: To Support a Design Repository
,”
Comput.-Aided Des. Appl.
,
40
(
7
), pp.
801
811
.10.1016/j.cad.2007.09.003
21.
McAdams
,
D. A.
, and
Wood
,
K.
,
2002
, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
J. Mech. Des.
,
124
(
2
), pp.
173
182
.10.1115/1.1475317
22.
Bhatta
,
S. R.
, and
Goel
,
A. K.
,
1997
, “
A Functional Theory of Design Patterns
,”
15th International Joint Conference on Artificial Intelligence - Volume 1
,
Nagoya, Japan
.
23.
Goel
,
A.
,
Bhatta
,
S.
, and
Stroulia
,
E.
,
1997
, “
Kritik: An Early Case-Based Design System
,”
Issues and Applications of Case-Based Reasoning in Design
,
M. L.
Maher
, and
P.
Pu
, eds.,
Erlbaum
,
Mahwah, NJ
, pp.
87
132
.
24.
Goel
,
A. K.
, and
Bhatta
,
S. R.
,
2004
, “
Use of Design Patterns in Analogy-Based Design
,”
Adv. Eng. Inf.
,
18
, pp.
85
94
.10.1016/j.aei.2004.09.003
25.
Bhatta
,
S.
,
Goel
,
A.
, and
Prabhakar
,
S.
,
1994
, “
Innovation in Analogical Design: A Model-Based Approach
,”
Artif Intelligence in Design
,
Dordrecht, The Netherlands
.
26.
Vescovi
,
M.
,
Iwasaki
,
Y.
,
Fikes
,
R.
, and
Chandrasekaran
,
B.
,
1993
, “
CFRL: A Language for Specifying the Causal Functionality of Engineered Devices
,”
Eleventh National Conference on Artificial Intelligence
,
Washington, DC
.
27.
Sembugamoorthy
,
V.
, and
Chandrasekaran
,
B.
,
1986
, “
Functional Representation of Devices and Compilation of Diagnostic Problem-Solving Systems
,”
Experience, Memory, Reasoning
,
J.
Kolodner
, and
C. K.
Riesbeck
, eds.,
Lawrence Erlbaum Associates
,
Hillsdale, NJ
, pp.
47
53
.
28.
Umeda
,
Y.
,
Ishii
,
M.
,
Yoshioka
,
M.
,
Shimomura
,
Y.
, and
Tomiyama
,
T.
,
1996
, “
Supporting Conceptual Design Based on the Function-Behavior-State Modeler
,”
Artif. Intell. Eng. Des
.,
Anal. Manuf.
,
10
(
4
), pp.
275
288
.
29.
Umeda
,
Y.
, and
Tomiyama
,
T.
,
1995
, “
FBS Modeling: Modeling Scheme of Function for Conceptual Design
,”
9th International Workshop on Qualitative Reasoning
,
Amsterdam, Nederlands
.
30.
Vucovich
,
J.
,
Bhardwaj
,
N.
,
Ho
,
H. H.
,
Ramakrishna
,
M.
,
Thakur
,
M.
, and
Stone
,
R.
,
2006
, “
Concept Generation Algorithms for Repository-Based Early Design
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
, Sept. 10–13.
31.
Bryant
,
C. R.
,
McAdams
,
D. A.
, and
Stone
,
R. B.
,
2006
, “
A Validation Study of an Automated Concept Generator Design Tool
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
, Sept. 10–13.
32.
Bryant
,
C. R.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2005
, “
Concept Generation From the Functional Basis of Design
,”
International Confeence on Engineering Design, ICED 05
,
Melbourne
, Aug. 15–18.
33.
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2009
, “
Automated Synthesis of Electromechanical Design Configurations from Empirical Analysis of Function to Form Mapping
,”
J. Eng. Des.
,
20
(
1
), 20, pp.
83
104
.10.1080/09544820701546165
34.
Kurtoglu
,
T.
,
Campbell
,
M. I.
,
Bryant
,
C. R.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2005
, “
Deriving a Component Basis for Computational Functional Synthesis
,”
International Conference on Engineering Design, ICED '05
,
Melbourne, Australia
, Aug. 15–18.
35.
Kurtoglu
,
T.
,
Swantner
,
A.
, and
Campbell
,
M. I.
,
2010
, “
Automating the Conceptual Design Process: From Black Box to Component Selection
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
24
(
1
), pp.
49
62
.10.1017/S0890060409990163
36.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Stock
,
M. E.
,
2005
, “
Linking Product Functionality to Historic Failures to Improve Failure Analysis in Design
,”
Res. Eng. Des.
,
16
(
2
), pp.
96
108
.10.1007/s00163-005-0005-z
37.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
ASME J. Mech. Des.
,
130
,
051401
.10.1115/1.2885181
38.
Arunajadai
,
S. G.
,
Uder
,
S. J.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2004
, “
Failure Mode Identification Through Clustering Analysis
,”
Qual. Reliab. Eng. Int.
,
20
, pp.
511
526
.10.1002/qre.663
39.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Wie
,
M. V.
,
2005
, “
The Function-Failure Design Method
,”
J. Mech. Des.
,
127
(
3
), p.
397
.10.1115/1.1862678
40.
Eck
,
D. V.
,
McAdams
,
D. A.
, and
Vermaas
,
P. E.
,
2007
, “
Functional Decomposition in Engineering: A Survey
,”
ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Las Vegas, NV
.
41.
Chandrasekaran
,
B.
, and
Josephson
,
J. R.
,
2000
, “
Function in Device Representation
,”
Eng. With Comput.
,
16
(
3–4),
pp.
162
177
.10.1007/s003660070003
42.
Umeda
,
Y.
,
Takeda
,
H.
,
Tomiyama
,
T.
, and
Yoshikawa
,
H.
,
1990
, “
Function, Behavior, and Structure
,”
Applications of Artificial Intelligence V, Vol 1: Design
,
J. S.
Gero
, ed.,
Springer Verlag
,
Boston, MA
, pp.
177
193
.
43.
Sasajima
,
M.
,
Kitamura
,
Y.
,
Ikeda
,
M.
, and
Mizoguchi
,
R.
,
1995
, “
FBRL: A Function and Behavior Representation Language
,”
International Joint Conferences on Artificial Intelligence
,
Montreal, Quebec, Canada
, Aug. 20–25.
44.
Garbacz
,
P.
,
2005-2006
, “
Towards a Standard Taxonomy of Artifact Functions
,”
Appl. Ontol.
,
1
, pp.
221
236
.
45.
Kitamura
,
Y.
, and
Mizoguchi
,
R.
,
2003
, “
Ontology-Based Description of Functional Design Knowledge and Its Use in a Functional Way Server
,”
Expert Syst. Appl.
,
24
, pp.
153
166
.10.1016/S0957-4174(02)00138-0
46.
Bracewell
,
R. H.
, and
Sharpe
,
J. E. E.
,
1996
, “
Functional Descriptions Used in Computer Support for Qualitative Scheme Generation—“Schemebuilder,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
10
(
4
), pp.
333
345
.10.1017/S0890060400001657
47.
Gero
,
J. S.
,
1996
, “
Creativity, Emergence and Evolution in Design
,”
Knowledge-Based Syst.
,
9
(
7
), pp.
435
448
.10.1016/S0950-7051(96)01054-4
48.
Rosenman
,
M. A.
, and
Gero
,
J. S.
,
1998
, “
Purpose and Function in Design: From the Socio-Cultureal to the Techno-Physical
,”
Des. Stud.
,
19
(
2
), pp.
161
186
.10.1016/S0142-694X(97)00033-1
49.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2002
, “
The Situated Function-Behaviour-Structure Framework
,”
Artif. Intell. Des.
,
J. S.
Gero
, ed.,
Kluwer Academic Publishers
,
Norwell, MA
, pp.
89
104
.
50.
Chandrasekaran
,
B.
,
2005
, “
Representing Function: Relating Functional Representation and Functional Modeling Research Streams
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
19
(
2
), pp.
65
74
.10.1017/S0890060405050079
51.
Kitamura
,
Y.
,
Koji
,
Y.
, and
Mizoguchi
,
R.
,
2005
, “
An Ontological Model of Device Function and Its Deployment for Engineering Knowledge Sharing
,”
First Workshop FOMI 2005—Formal Ontologies Meet Industry, Castelnuovo del Garda (VR)
,
Italy
, June 9–10.
52.
Cebrian-Tarrason
,
D.
,
Lopez-Montero
,
J. A.
, and
Vidal1
,
R.
,
2008
, “
OntoFaBeS: Ontology Design Based in FBS Framework
,”
CIRP Design Conference 2008: Design Synthesis
, Enschede,
The Netherlands
, Apr. 7–9.
53.
Borgo
,
S.
,
Carrara
,
M.
,
Garbacz
,
P.
, and
Vermaas
,
P. E.
,
2011
, “
A Formalization of Functions as Operation on Flows
,”
J. Comput. Inf. Sci. Eng.
,
11
(
3
),
031007
.10.1115/1.3615523
54.
Albers
,
A.
,
Matthiesen
,
S.
,
Thau
,
S.
, and
Alink
,
T.
,
2008
, “
Support of Design Engineering Activity Through C&CM—Temporal Decomposition of Design Problems
,”
TMCE 2008 Symposium
,
Izmir, Turkey
, Apr. 21–25.
55.
Albers
,
A.
,
Burkardt
,
N.
, and
Ohmer
,
M.
,
2004
, “
Principles for Design on the Abstract Level of the Contact & Channel Model
,”
TMCE 2004
,
Lausanne, Switzerland
, Apr. 13–17.
56.
Kroes
,
P.
,
2010
, “
Formalization of Technical Functions: Why is that so Difficult?” Tools and Methods of Competitive Engineering
,
TMCE-2010
,
Ancona, Italy
, Aug. 12–16.
57.
Collins
,
J. A.
,
Hagan
,
B. T.
, and
Bratt
,
H. M.
,
1976
, “
Failure-Experience Matrix—A Useful Design Tool
,”
J. Eng. Ind., B
,
98
(
3
), pp.
1074
1079
.10.1115/1.3439009
58.
Kirschman
,
C. F.
, and
Fadel
,
G. M.
,
1998
, “
Classifying Functions for Mechanical Design
,”
J. Mech. Des.
,
120
(
3
), pp.
475
482
.10.1115/1.2829176
59.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
J. Mech. Des.
,
122
(
4
), pp.
359
370
.10.1115/1.1289637
60.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
61.
Szykman
,
S.
,
Racz
,
J. W.
, and
Sriram
,
R. D.
,
1999
, “
The Representation of Function in Computer-Based Design
,”
1999 ASME Design Engineering Technical Conferences
,
Las Vegas, NV
, Sept. 12–15.
62.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M.
,
2010
,
Fundamentals of Engineering Thermodynamics
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
You do not currently have access to this content.