In the present paper, we are describing a methodology for the determination of the complete set of parameters associated with the Weierstrass-Mandelbrot (W-M) function that can describe a fractal scalar field distribution defined by measured or computed data distributed on a surface or in a volume. Our effort is motivated not only by the need for accurate fractal surface and volume reconstruction but also by the need to be able to describe analytically a scalar field quantity distribution on a surface or in a volume that corresponds to various material properties distributions for engineering and science applications. Our method involves utilizing a refactoring of the W-M function that permits defining the characterization problem as a high dimensional inverse problem solved by singular value decomposition for the so-called phases of the function. Coupled with this process is a second level exhaustive search that enables the determination of the density of the frequencies involved in defining the trigonometric functions participating in the definition of the W-M function. Numerical applications of the proposed method on both synthetic and actual surface and volume data, validate the efficiency and the accuracy of the proposed approach. This approach constitutes a radical departure from the traditional fractal dimension characterization studies and opens the road for a very large number of applications.

References

References
1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
–319.10.1098/rspa.1966.0242
2.
Greenwood
,
J. A.
, and
Wu
,
J. J.
,
2001
, “
Surface Roughness and Contact: An Apology
,”
Meccanica
,
36
(
6
), pp.
617
630
.10.1023/A:1016340601964
3.
Komvopoulos
,
K.
,
2008
, “
Effects of Multi-Scale Roughness and Frictional Heating on Solid Body Contact Deformation
,”
C. R. Mec
,
336
(
1–2
), pp.
149
162
.10.1016/j.crme.2007.11.005
4.
Tam
,
E.
,
Lhernould
,
M. S.
,
Lambert
,
P.
,
Delchambre
,
A.
, and
Delplancke-Ogletree
,
M.-P.
,
2009
, “
Electrostatic Forces in Micromanipulation: Experimental Characterization and Simulation Including Roughness
,”
Appl. Surf. Sci.
,
255
(
18
), pp.
7898
7904
.10.1016/j.apsusc.2009.04.150
5.
Mitchell
,
M. W.
, and
Bonnell
,
D. A.
,
1990
, “
Quantitative Topographic Analysis of Fractal Surfaces by Scanning Tunneling Microscopy
,”
J. Mater. Res.
,
5
(
10
), pp.
2244
2254
.10.1557/JMR.1990.2244
6.
Ausloos
,
M.
, and
Berman
,
D. H.
,
1985
, “
A Multivariate Weierstrass-Mandelbrot Function
,”
Proc. R. Soc. London, Ser. A
,
400
(
1819
), pp.
331
350
.10.1098/rspa.1985.0083
7.
Ciavarella
,
M.
,
Murolo
,
G.
, and
Demelio
,
G.
,
2004
, “
The Electrical/Thermal Conductance of Rough Surfaces–The Weierstrass-Archard Multiscale Model
,”
Int. J. Solids Struct.
,
41
(
15
), pp.
4107
4120
.10.1016/j.ijsolstr.2004.02.048
8.
Kogut
,
L.
, and
Jackson
,
R. L.
,
2006
, “
A Comparison of Contact Modeling Utilizing Statistical and Fractal Approaches
,”
J. Tribol.
,
128
(
1
), pp.
213
217
.10.1115/1.2114949
9.
Niloy
,
G.
, and
Prasanta
,
S.
,
2007
, “
Finite Element Contact Analysis of Fractal Surfaces
,”
J. Phys. D
,
40
, pp. 4245–4252.
10.
Gallant
,
J.
,
Moore
,
I.
,
Hutchinson
,
M.
, and
Gessler
,
P.
,
1994
, “
Estimating Fractal Dimension of Profiles: A Comparison of Methods
,”
Math. Geol.
,
26
(
4
), pp.
455
481
.10.1007/BF02083489
11.
Bora
,
C.
,
Flater
,
E.
,
Street
,
M.
,
Redmond
,
J.
,
Starr
,
M.
,
Carpick
,
R.
, and
Plesha
,
M.
,
2005
, “
Multiscale Roughness and Modeling of MEMS Interfaces
,”
Tribol. Lett.
,
19
(
1
), pp.
37
48
.10.1007/s11249-005-4263-8
12.
Gao
,
Y.
, and
Bower
,
A. F.
,
2006
, “
Elastic-Plastic Contact of a Rough Surface With Weierstrass Profile
,”
Proc. R. Soc. London
,
462
(
2065
), pp.
319
348
.10.1098/rspa.2005.1563
13.
Buzio
,
R.
,
Malyska
,
K.
,
Rymuza
,
Z.
,
Boragno
,
C.
,
Biscarini
,
F.
,
Mongeot
,
F. D.
, and
Valbusa
,
U.
,
2004
, “
Experimental Investigation of the Contact Mechanics of Rough Fractal Surfaces
,”
IEEE Trans. Nanobiosci.
,
3
(
1
), pp.
27
31
.10.1109/TNB.2003.820264
14.
Rezvanian
,
O.
,
Zikry
,
M. A.
,
Brown
,
C.
, and
Krim
,
J.
,
2007
, “
Surface Roughness, Asperity Contact and Gold RF MEMS Switch Behavior
,”
J. Micromechanics Microengineering
,
17
(
10
), pp.
2006
2015
.10.1088/0960-1317/17/10/012
15.
Komvopoulos
,
K.
, and
Ye
,
N.
,
2001
, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
J. Tribol.
,
123
(
3
), pp.
632
640
.10.1115/1.1327583
16.
Morag
,
Y.
, and
Etsion
,
I.
,
2007
, “
Resolving the Contradiction of Asperities Plastic to Elastic Mode Transition in Current Contact Models of Fractal Rough Surfaces
,”
Wear
,
262
(
5–6
), pp.
624
629
.10.1016/j.wear.2006.07.007
17.
Berry
,
M. V.
, and
Lewis
,
Z. V.
,
1980
, “
On the Weierstrass-Mandelbrot Fractal Function
,”
Proc. R. Soc. London, Ser. A
,
370
(
1743
), pp.
459
484
.10.1098/rspa.1980.0044
18.
Heurteaux
,
Y.
,
2003
, “
Weierstrass Functions With Random Phases
,”
Trans. Am. Math. Soc.
,
355
(
8
), pp.
3065
3077
.10.1090/S0002-9947-03-03221-5
19.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
,
2000
, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London
,
456
(
1994
), pp.
387
405
.10.1098/rspa.2000.0522
20.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
J. Tribol.
,
113
(
1
), pp.
1
11
.10.1115/1.2920588
21.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
J. Tribol.
,
116
(
4
), pp.
812
822
.10.1115/1.2927338
22.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications
,”
J. Tribol.
,
116
(
4
), pp.
824
832
.10.1115/1.2927341
23.
Komvopoulos
,
K.
, and
Yan
,
W.
,
1997
, “
A Fractal Analysis of Stiction in Microelectromechanical Systems
,”
J. Tribol.
,
119
(
3
), pp.
391
400
.10.1115/1.2833500
24.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
”.
Wear
,
136
(
2
), pp.
313
327
.10.1016/0043-1648(90)90154-3
25.
Kogut
,
L.
, and
Komvopoulos
,
K.
,
2003
, “
Electrical Contact Resistance Theory for Conductive Rough Surfaces
,”
J. Appl. Phys.
,
94
(
5
), pp.
3153
3162
.10.1063/1.1592628
26.
Michopoulos
,
J.
,
Iliopoulos
,
A.
, and
Young
,
M.
,
2012
, “
Towards Static Contact Multiphysics of Rough Surfaces
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Aug. 12–15
,
Chicago, IL
, ASME DETC2012-71055.
27.
Michopoulos
,
J. G.
, and
Lliopoulos
,
A.
,
2010
, “
Four Parameter Inverse Characterization of Fractal Surfaces
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2010) Aug. 15–18
,
Montreal, Quebec, Canada
, pp.
835
842
.
28.
Michopoulos
,
J. G.
, and
Iliopoulos
,
A. P.
,
2011
, “
Complete High Dimensional Inverse Characterization of Fractal Surfaces
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Vol.
(CDROM)
.
29.
Michopoulos
,
J.
, and
Iliopoulos
,
A.
,
2012
, “
High Dimensional Full Inverse Characterization of Fractal Volumes
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Aug. 12–15
,
Chicago, IL
, DETC2012-71050.
30.
Mandelbrot
,
B. B.
,
1975
, “
Stochastic Models for the Earth's Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands
,”
Proc. Natl. Acad. Sci. U.S.A.
,
72
(
10
), pp.
3825
3828
.10.1073/pnas.72.10.3825
31.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1978
, “
Surface Topography as a Nonstationary Random Process
,”
Nature
,
271
(
5644
), pp.
431
434
.10.1038/271431a0
32.
Komvopoulos
,
K.
, and
Yan
,
W.
,
1997
, “
A Fractal Analysis of Stiction in Microelectromechanical Systems
,”
J. Tribol.
,
119
(
3
), pp.
391
400
.10.1115/1.2833500
33.
Wang
,
S.
,
Shen
,
J.
, and
Chan
,
W. K.
,
2007
, “
Determination of the Fractal Scaling Parameter From Simulated Fractal-Regular Surface Profiles Based on the Weierstrass-Mandelbrot Function
,”
J. Tribol.
,
129
(
4
), pp.
952
956
.10.1115/1.2768617
34.
Weeks
,
J. R.
,
1985
,
The Shape of Space: How to Visualize Surfaces and Three-Dimensional Manifolds
,
Dekker
, New York.
35.
Mast
,
P.
,
Nash
,
G.
,
Michopoulos
,
J.
,
Thomas
,
R.
,
Wolock
,
I.
, and
Badaliance
,
R.
,
1995
, “
Characterization of Strain-Induced Damage in Composites Based on the Dissipated Energy Density Part II. Composite Specimens and Naval Structures
,”
Theor. Appl. Fract. Mech.
,
22
(
2
), pp.
97
114
.10.1016/0167-8442(94)00051-2
36.
Mast
,
P.
,
Nash
,
G.
,
Michopoulos
,
J.
,
Thomas
,
R.
,
Wolock
,
I.
, and
Badaliance
,
R.
,
1995
, “
Characterization of Strain-Induced Damage in Composites Based on the Dissipated Energy Density Part I. Basic Scheme and Formulation
,”
Theor. Appl. Fract. Mech.
,
22
(
2
), pp.
71
96
.10.1016/0167-8442(94)00050-B
You do not currently have access to this content.