Current parametric CAD systems are based on solving equality types of constraints between geometric objects and parameters. This includes algebraic equations constraining the values of variables, and geometric constraints constraining the positions of geometric objects. However, to truly represent design intent, next-generation CAD systems must also allow users to input other types of constraints such as inequality constraints. Inequality constraints are expressed as inequality expressions on variables, or as geometric constraints that force geometric objects to be on specific sides or have specific orientations with respect to other objects. The research presented here investigates whether the frontier algorithm can be extended to solve geometry positioning problems involving systems of equality- and inequality-based declarations in which the inequality-based declarations are used as solution selectors to choose from multiple solutions inherently arising when solving these systems. It is found that these systems can be decomposed by the frontier algorithm in a manner similar to purely equality-based constraint systems, however they require tracking and iterating through multiple solutions and in many cases may require backtracking through the solution sequence. The computational complexity of the new algorithm is found to be the same as the frontier algorithm in the planning phase and linear in the execution phase with respect to the size of the problem but exponential with respect to the distance of solution selection steps from the satisfaction steps they control.

References

References
1.
Bettig
,
B.
, and
Shah
,
J.
,
2003
, “
Solution Selectors: A User-Oriented Answer to the Multiple Solution Problem in Constraint Solving
,”
Trans. ASME J. Mech. Des.
,
125
(
3
), pp.
443
451
.10.1115/1.1587749
2.
Hoffman
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
,
2001
, “
Decomposition Plans for Geometric Constraint Systems, Part I: Performance Measures for CAD
,”
J. Symb. Comput.
,
31
(
4
), pp.
367
408
.10.1006/jsco.2000.0402
3.
Hoffmann
,
C. M.
,
Sitharam
,
M.
, and
Yuan
,
B.
,
2004
, “
Making Constraint Solvers More Usable: Overconstraint Problem
,”
Comput.-Aided Des.
,
36
(
4
), pp.
377
399
.10.1016/S0010-4485(03)00099-X
4.
Bettig
,
B.
,
2011
, “
MAE455: Computer Aided Design and Drafting Course Notes
,” http://community.wvu.edu/∼bpb011/MAE455/index.html
5.
Hoffmann
,
C. M.
, and
Joan-Arinyo
,
R.
,
2005
, “
A Brief on Constraint Solving
,”
Comput.-Aided Des. Appl.
,
2
(
5
), pp.
655
663
. 10.3722/cadaps.2005.655-663
6.
Fudos
,
I.
,
1995
, “
Constraint Solving for Computer Aided Design
,” Ph.D. thesis,
Purdue University, West Lafayette, IN
.
7.
Hsu
,
C.
,
1996
, “
Graph-Based Approach for Solving Geometric Constraint Problems
,” Ph.D. thesis, Department of Computer Science,
University of Utah
,
Salt Lake City, UT
.
8.
Lomonosov
,
A.
,
2004
, “
Graph and Combinatorial Algorithms for Geometric Constraint Solving
,”
Doctoral Dissertation, University of Florida
,
Gainesville, FL
.
9.
van Emmerik
,
M.
,
1991
, “
Interactive Design of 3D Models With Geometric Constraints
,”
Visual Comput.
,
7
(
5
), pp.
309
325
.10.1007/BF01905695
10.
Solano
,
L.
, and
Brunet
,
P.
,
1993
, “
A System for Constructive Constraint-Based Modeling
,”
Modeling in Computer Graphics Methods and Applications
,
B.
Falcidieno
and
T.
Kunii
, eds.,
Springer
Verlag
, New York, NY, pp.
61
83
.
11.
Kramer
,
G. A.
,
1992
,
Solving Geometric Constraint Systems: A Case Study in Kinematics
,
MIT Press
,
Cambridge, MA
.
12.
Fudos
,
I.
, and
Hoffmann
,
C. M.
,
1996
, “
Correctness Proof of a Geometric Constraint Solver
,”
Int. J. Comput. Geom. Appl.
,
6
(
4
), pp.
405
420
.10.1142/S0218195996000253
13.
Fudos
,
I.
, and
Hoffmann
,
C. M.
,
1997
, “
A Graph-Constructive Approach to Solving Systems of Geometric Constraints
,”
ACM Trans. Graphics
,
16
(
2
), pp.
179
216
.10.1145/248210.248223
14.
Aldefeld
,
B.
,
1988
, “
Variation of Geometrics Based on a Geometric-Reasoning Method
,”
Comput.-Aided Des.
,
20
(
3
), pp.
117
126
.10.1016/0010-4485(88)90019-X
15.
Shimizu
,
S.
,
Inoue
,
K.
, and
Numao
,
M.
,
1991
, “
An ATMS-Based Geometric Constraint Solver for 3D CAD
,”
Tools for Artificial Intelligence, TAI'91, Third International Conference
on, pp.
282
290
.
16.
Suzuki
,
H.
,
Ando
,
H.
, and
Kimura
,
F.
,
1990
, “
Geometric Constraints and Reasoning for Geometrical CAD Systems
,”
Comput. Graph.
,
14
(
2
), pp.
211
224
.10.1016/0097-8493(90)90033-T
17.
Buchanan
,
S. A.
, and
de Pennington
,
A.
,
1993
, “
Constraint Definition System: A Computer-Algebra Based Approach to Solving Geometric-Constraint Problems
,”
Comput.-Aided Des.
,
25
(
12
), pp.
741
750
.10.1016/0010-4485(93)90101-S
18.
Bouma
,
W.
,
Fudos
,
I.
,
Hoffmann
,
C.
,
Cai
,
J.
, and
Paige
,
R.
,
1995
, “
Geometric Constraint Solver
,”
Comput.-Aided Des.
,
27
(
6
), pp.
487
501
.10.1016/0010-4485(94)00013-4
19.
Sohrt
,
W.
, and
Brüderlin
,
B. D.
,
1991
, “
Interaction With Constraints in 3D Modeling
,”
Proceedings of the First ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications
, pp.
387
396
.
20.
van der Meiden
,
H. A.
, and
Bronsvoort
,
W. F.
,
2005
, “
An Efficient Method to Determine the Intended Solution for a System of Geometric Constraints
,”
Int. J. Comput. Geom. Appl.
,
15
(
3
), pp.
279
298
.10.1142/S0218195905001701
21.
Joan-Arinyo
,
R.
,
Luzón
,
M. V.
, and
Soto
,
A.
,
2003
, “
Genetic Algorithms for Root Multiselection in Constructive Geometric Constraint Solving
,”
Comput. Graphics
,
27
(
1
), pp.
51
60
.10.1016/S0097-8493(02)00243-1
22.
Durand
,
C.
, and
Hoffmann
,
C. M.
,
2000
, “
A Systematic Framework for Solving Geometric Constraints Analytically
,”
J. Symb. Comput.
,
30
(
5
), pp.
493
519
.10.1006/jsco.2000.0392
23.
Essert-Villard
,
C.
,
Schreck
,
P.
, and
Dufourd
,
J. F.
,
2000
, “
Sketch-Based Pruning of a Solution Space Within a Formal Geometric Constraint Solver
,”
Artif. Intell.
,
124
(
1
), pp.
139
159
.10.1016/S0004-3702(00)00061-8
24.
Essert-Villard
,
C.
,
2002
, “
Helping the Designer in Solution Selection: Applications in CAD
,”
Proceedings of the International Conference on Computational Science-Part II
, pp.
151
160
.
25.
Sitharam
,
M.
,
Sitharam
,
M.
,
Arbree
,
A.
,
Zhou
,
Y.
, and
Kohareswaran
,
N.
,
2006
, “
Solution Space Navigation for Geometric Constraint Systems
,”
ACM Trans. Graphics
,
25
(
2
), pp.
194
213
.10.1145/1138450.1138452
26.
Hoffman
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
,
2001
, “
Decomposition Plans for Geometric Constraint Problems, Part II: New Algorithms
,”
J. Symb. Comput.
,
31
(
4
), pp.
409
427
.10.1006/jsco.2000.0403
27.
Chaubal
,
S.
, “
Implementation of Modified Frontier Algorithm for Constraint Solving
,” Masters Thesis, Michigan Technological University,
Houghton, MI
.
29.
Hoffmann
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
,
1997
, “
Finding Solvable Subsets of Constraint Graphs
,”
Proceedings Principles and Practice of Constraint Programming-CP97: Third International Conference
, CP'97, Linz, Austria, Oct. 29–Nov. 1.
30.
Astrachan
,
O. L.
,
2003
, Big-Oh for Recursive Functions: Recurrence Relations, Duke
University, Durham, NC
, http://www.cs.duke.edu/∼ola/ap/recurrence.html
31.
Bettig
,
B.
, and
Bapat
,
V.
,
2006
, “
Integrating Multiple Information Representations in a Single CAD/CAM/CAE Environment
,”
Eng. Comput.
,.
22
(
1
), pp.
11
23
.10.1007/s00366-006-0025-y
32.
Bettig
,
B.
, and
Shah
,
J.
,
1999
, “
An Object-Oriented Program Shell for Integrating CAD Software Tools
,”
Adv. Eng. Software
,
30
(
8
), pp.
529
541
.10.1016/S0965-9978(99)00009-5
33.
Bettig
,
B. P.
, and
Han
,
R. P. S
,
1996
, “
An Object-Oriented Framework for Interactive Numerical Analysis in a Graphical User Interface Environment
,”
Int. J. Numer. Methods Eng.
,
39
(
17
), pp.
2945
2971
.10.1002/(SICI)1097-0207(19960915)39:17<2945::AID-NME984>3.0.CO;2-X
You do not currently have access to this content.