Emergent behavior is a unique aspect of complex systems, where they exhibit behavior that is more complex than the sum of the behavior of their constituent parts. This behavior includes the propagation of faults between parts, and requires information on how the parts are connected. These parts can include software, electronic and mechanical components, hence requiring a capability to track emergent fault propagation paths as they cross the boundaries of technical disciplines. Prior work has introduced the functional failure identification and propagation (FFIP) simulation framework, which reveals the propagation of abnormal flow states and can thus be used to infer emergent system-wide behavior that may compromise the reliability of the system. An advantage of FFIP is that it is used to model early phase designs, before high cost commitments are made and before high fidelity models are available. This has also been a weakness in previous research on FFIP, since results depend on arbitrary choices for the values of model parameters and timing of critical events. Previously, FFIP has used a discrete set of flow state values and a simple behavioral logic; this has had the advantage of limiting the range of possible parameter values, but it has not been possible to model continuous process dynamics. In this paper, the FFIP framework has been extended to support continuous flow levels and linear modeling of component behavior based on first principles. Since this extension further expands the range of model parameter values, methods and tools for studying the impact of parameter value changes are introduced. The result is an evaluation of how the FFIP results are impacted by changes in the model parameters and the timing of critical events. The method is demonstrated on a boiling water reactor model (limited to the coolant recirculation and steam outlets) in order to focus the analysis of emergent fault behavior that could not have been identified with previously published versions of the FFIP framework.

References

References
1.
Thramboulidis
,
K.
,
2005
, “
Model-Integrated Mechatronics—Toward a New Paradigm in the Development of Manufacturing Systems
,”
IEEE Trans. Ind. Inf.
,
1
(
1
), pp.
54
61
.10.1109/TII.2005.844427
2.
Amerongen
,
J. V.
,
2003
, “
Mechatronic Design
,”
Mechatronics
,
13
, pp.
1045
1066
.10.1016/S0957-4158(03)00042-4
3.
Weilkiens
,
T.
,
2007
,
Systems Engineering With SysML/UML: Modeling, Analysis, Design
,
Morgan Kaufmann
,
San Francisco, CA
.
4.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
J. Mech. Des.
130
(
5
), p.
051401
.10.1115/1.2885181
5.
Kurtoglu
T.
,
Tumer
,
I. Y.
, and
J. D.
,
2010
, “
A Functional Failure Reasoning Methodology for Evaluation of Conceptual System Architectures
,”
Res. Eng. Des.
,
21
(
4
), pp.
209
234
.10.1007/s00163-010-0086-1
6.
Jensen
D.
,
Tumer
,
I. Y.
, and
Kurtoglu
,
T.
,
2008
, “
Modeling the Propagation of Failures in Software-Driven Hardware Systems to Enable Risk-Informed Design
,”
ASME IMECE
.
7.
Jensen
D.
,
Tumer
,
I. Y.
, and
Kurtoglu
,
T.
,
2009
, “
Design of an Electrical Power System Using a Functional Failure and Flow State Logic Reasoning Methodology
,”
Prognostics and Health Management Society
.
8.
Tumer
,
I. Y.
, and
Smidts
,
C. S.
,
2010
, “
Integrated Design and Analysis of Software-Driven Hardware Systems
,”
IEEE Trans. Comput., Special Issue on Science of Design of Safety-Critical Systems
,
60
(
8
), pp.
1072
1084
.
9.
Papkonstantinou
,
N.
,
Sierla
,
S.
,
Jensen
,
D. C.
, and
Tumer
,
I. Y.
,
2011
, “
Capturing Interactions and Emergent Failure Behavior in Complex Engineered Systems at Multiple Scales
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
,
Washington, DC
.
10.
Vesely
,
W. E.
,
Goldberg
,
F. F.
,
Roberts
,
N. H.
, and
Haasi
,
D. F.
,
1981
,
The Fault Tree Handbook
,
U.S. Nuclear Regulatory Commission
.
11.
Price
,
C. J.
, and
Taylor
,
N. S.
,
1998
, “
FMEA for Multiple Failures
,”
Reliability and Maintainability Symposium
,
Anaheim, CA
.
12.
Hu
,
T.
,
Yu
,
J.
, and
Wang
,
S.
,
2009
, “
Research on Complex System FMEA Method Based on Functional Modeling
,”
Reliability, Maintainability and Safety
,
Chengdu
.
13.
Mauri
,
G.
,
McDermid
,
J. A.
, and
Papadopoulos
,
Y.
,
1998
, “
Extension of Hazard and Safety Snalysis Techniques to Address Problems of Hierarchical Scale
,” IEE Colloquium on Systems Engineering of Aerospace Projects, Digest No. 1998/249.
14.
Papadopoulos
,
Y.
,
Parker
,
D.
, and
Grante
,
C.
,
2004
, “
Automating the Failure Modes and Effects Analysis of Safety Critical Systems
,”
High Assurance Systems Engineering
,
Tampa, FL
.
15.
Pasquale
,
T.
,
Rosaria
,
E.
,
Pietro
,
M.
, and
Antonio
,
O.
,
2003
, “
Hazard Analysis of Complex Distributed Railway Systems
,”
Reliable Distributed Systems
,
Florence, Italy
.
16.
Schreiber
,
S.
,
Schmidberger
,
T.
,
Fay
,
A.
,
May
,
J.
,
Drewes
,
J.
, and
Schnieder
,
E.
,
2007
, “
UML-Based Safety Analysis of Distributed Automation Systems
,”
Emerging Technologies and Factory Automation
,
Patras, Greece
.
17.
Stamatelatos
,
M.
, and
Apostolakis
,
G.
,
2002
, “
Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners
,”
NASA, Safety and Mission Assurance
.
18.
Perera
,
J.
, and
Holsomback
,
J.
,
2004
, “
Use of Probabilistic Risk Assessments for the Space Station Program
,”
Aerospace Conference
.
19.
Sturges
,
R. H.
,
Kilani
,
M.
, and
OShaughnessy
,
K.
,
1996
, “
Computational Model for Conceptual Design Based on Extended Function Logic
,”
Artif. Intell. Eng. Des. Manuf. J.
,
10
, pp.
255
274
.10.1017/S089006040000161X
20.
Szykman
,
S.
,
Sriram
,
R. D.
,
Bochenek
,
C.
, and
Racz
,
J.
,
1998
, “
The NIST Design Repository Project
,”
Advances in Soft Computing—Engineering Design and Manufacturing
,
Springer-Verlag
,
London
.
21.
Terpenny
,
J.
, and
Mathew
,
D.
,
2004
, “
Modeling Environment for Function-Based Conceptual Design
,”
Design Automation Conference/IDETC/CIE 2004
,
Salt Lake City, UT
.
22.
Sasajima
,
M.
,
Kitamura
,
Y.
,
Ikeda
,
M.
, and
Mizoguchi
,
R.
,
1996
, “
A Representation Language for Behavior and Function: FBRL
,”
Expert Syst. Appl.
,
10
(
3/4
), pp.
471
479
.10.1016/0957-4174(96)00027-9
23.
Qian
,
L.
, and
Gero
,
J. S.
,
1996
, “
Function-Behaviour-Structure and Their Roles in Analogy-Based Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
, pp.
289
312
.10.1017/S0890060400001633
24.
Huang
,
E.
,
Ramamurthy
,
R.
, and
McGinnis
,
L.
,
2007
, “
System and Simulation Modeling Using SysML
,”
Conference on Winter simulation
,
IEEE Press
, Washington, DC.
25.
Tumer
,
I. Y.
, and
Stone
,
R. B.
,
2003
, “
Mapping Function to Failure During High-Risk Component Development
,”
Res. Eng. Des.
,
14
(
1
), pp.
25
33
.
26.
Wang
,
K.-L.
, and
Jin
,
Y.
,
2002
, “
An Analytical Approach to Functional Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
.
27.
Hoyle
,
C.
,
Tumer
,
I. Y.
,
Mehr
,
A. F.
, and
Wei
,
C.
,
2009
, “
Health Management Allocation During Conceptual System Design
,”
J. Comput. Inf. Sci. Eng.
,
9
(
2
), p.
021002
.10.1115/1.3130775
28.
Simpson
,
T. W.
,
Peplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.10.1007/PL00007198
29.
Box
,
G. E. P.
, and
Wilson
,
K. B.
,
1951
, “
On the Experimental Attainment of Optimum Conditions
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
13
(
1
), pp.
1
45
.
30.
Guo
,
J.
, and
Du
,
X.
,
2010
, “
Reliability Analysis for Multidisciplinary Systems With Random and Interval Variables
,”
AIAA J.
,
48
(
1
), pp.
82
91
.10.2514/1.39696
31.
Zang
,
C.
,
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
2005
, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
,
83
(
4–5
), pp.
315
326
.10.1016/j.compstruc.2004.10.007
32.
Deb
,
S.
,
Pattipati
,
K. R.
,
Raghavan
,
V.
,
Shakeri
,
M.
, and
Shrestha
,
R.
,
1995
, “
Multisignal Flow Graphs: A Novel Approach for System Testability Analysis and Fault Diagnosis
,” IEEE Aerospace and Electronics Systems Magazine, pp.
14
25
.
33.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Risk-Informed Decision Making Methodology for Evaluating Failure Impact of Early System Designs
,”
2008 International Design Theory and Methodology Conference, IDETC/CIE2008
,
Brooklyn, NY
.
34.
de Kleer
,
J. K.
,
Lukas
,
K.
,
Liu
,
J.
,
Price
,
B.
,
Do
,
M.
, and
Zhou
,
R.
,
2009
, “
Continuously Estimating Persistent and Intermittent Failure Probabilities
,”
SafeProcess 200
9
.
35.
Forbus
,
K.
,
1984
, “
Qualitative Process Theory
,”
Artif. Intell.
,
24
, pp.
85
168
.10.1016/0004-3702(84)90038-9
36.
Weld
,
D.
, and
de Kleer
,
J.
,
1987
,
Readings in Qualitative Physics
,
Morgan Kauffman
,
San Francisco, CA
.
37.
Struss
,
P.
,
1988
, “
Mathematical Aspects of Qualitative Reasoning
,”
Int. J. Artif. Intell. Eng.
,
3
(
3
), pp.
156
169
.10.1016/0954-1810(88)90032-5
38.
Kuipers
,
B. J.
,
1986
, “
Qualitative Simulation
,”
Artif. Intell.
,
29
(
3
), pp.
289
338
.10.1016/0004-3702(86)90073-1
39.
Stone
,
R.
, and
Wood
,
K.
,
2000
, “
Development of a Functional Basis for Design
,”
J. Mech. Des.
,
122
(
4
), pp.
359
370
.10.1115/1.1289637
40.
Abagyan
,
L. P.
,
Golubev
,
V. I.
,
Golyaev
,
N. D.
,
Zvonarev
,
A. V.
,
Koleganov
,
Y. F.
,
Nikolaev
,
M. N.
, and
Orlov
,
M. Yu.
,
1968
, “
Propagation of Neutrons in Uranium dioxide II. Doppler Effect in U238
,”
At. Energy
,
25
(
4
), pp.
1090
1094
.10.1007/BF01163622
41.
Davis
,
M.
,
Sigal
,
R.
, and
Weyuker
,
E. J.
,
1994
,
Computability, Complexity, and Languages
,
Morgan Kaufmann
,
San Francisco, CA
.
42.
Gaffney
,
J. E.
, and
Davis
,
C. F.
,
1988
, “
An Approach to Estimating Software Errors and Availability
,”
Eleventh Minnowbrook Workshop on Software Reliability
.
You do not currently have access to this content.